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Introduction



Canonical Two-Period DiD

• Here we quickly review notations used in Roth and Sant’Anna

(2023).

• Suppose that we have panel data {{(Yit, Dit)}Tt=0}ni=1, where i and

t index units and time periods, respectively. Yit ∈ R and

Dit ∈ {0, 1} denote the outcome and treatment, respectively, for

unit i in period t.

• Consider the simplest case where T = 1, no units are treated at

t = 0 (i.e., Di0 = 0 for any i), and some but not all units become

treated at t = 1.

• Then, only Di1 is relevant, and we simply write Di = Di1.

• Let Yit(d) denote the potential outcome given Di = d.
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Parallel Trends in Canonical DiD

• Parallel trends (PT) is a key assumption for point identification of

ATT in Difference-in-Differences (DiD) designs. 1

• In a canonical two-period DiD model, PT means

E[Yi1(0)− Yi0(0)|Di = 1] = E[Yi1(0)− Yi0(0)|Di = 0]

In words, the untreated potential outcome is required to have the

same average path over time between the treated and untreated

groups.

• Under assumptions of no anticipation and PT, ATT is identified as

τATT = E[Yi1(1)− Yi1(0)|Di = 1]

= E[Yi1 − Yi0|Di = 1]− E[Yi1 − Yi0|Di = 0]
1Note that identification of ATT also requires another assumpution, namely,

“no anticipation,” or “no anticipatory effects of treatment,” which we do not

focus on here.
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PT and Functional Form

• The justification of PT may depend on the functional form. For

example, which of the following should we expect to hold?

E[Yi1(0)− Yi0(0)|Di = 1] = E[Yi1(0)− Yi0(0)|Di = 0]?

E[log Yi1(0)− log Yi0(0)|Di = 1] = E[log Yi1(0)− log Yi0(0)|Di = 0]?

• Literatures note that the PT assumption may hold in log but not

levels or vice versa (e.g., Meyer 1995; Athey and Imbens 2006;

Kahn-Lang and Lang 2020).

• Roth and Sant’Anna (2023) show that, under a certain condition,

PT holds for any strictly monotonic transformations:

E[g(Yi1(0))− g(Yi0(0))|Di = 1] = E[g(Yi1(0))− g(Yi0(0))|Di = 0]

for all strictly monotonic g. The converse is also shown to be true. 2

2This page and the next one quote a lecture slide by Yanagi, T. (2024).
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• Roth and Sant’Anna (2023) show that PT is insensitive to

functional form iff a “parallel-trends”-type condition holds for the

entire cumulative distribution function (CDF) of Y (0).

• They further provide the following characterizations: the above

condition can be satisfied iff

• treatment is as-if randomly assigned (i.e., the distribution of

Yit(0) conditional on Di = d does not depend on d); or

• the distribution of Yit(0) is stable over time for each treatment

group (i.e., the distribution of Yit(0) conditional on Di = d

does not depend on t); or

• a hybrid of above two cases holds (i.e., θ fraction of the

population satisfies the first one, and (1− θ) fraction of the

population satisfies the second one).

• In the setting where the treatment is not (as-if) randomly assigned,

the assumptions needed for the insensitivity of PT to functional

form will often be quite restrictive.
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Literature and Contribution

• The seinsitivity of PT to functional form is pointed out by Meyer

(1995); Athey and Imbens (2006); and Kahn-Lang and Lang (2020).

• Athey and Imbens (2006) introduce assumptions for identifying

distributional treatment effects in DiD settings. This is related to,

but distinct from, Roth and Sant’Anna (2023).

• Roth and Sant’Anna (2023) provide the first full characterizations

of when PT is sensitive to functional form. They also provide

testable implications of insensivity to transformations.
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Invariance of Parallel Trends



Setup

• Consider the canonical DiD introduced above (for expositional

simplicity).

• Note that Roth and Sant’Anna (2023)’s results have

immediate implications for DiD settings with multiple periods

and staggered treatment timing. See Roth, Sant’Anna, Bilinski

and Poe (2022) for a review.

• Similarly, their resluts would go thorough in settings with

conditional parallel trends. See Abadie (2005); and Sant’Anna

and Zhao (2020) for details.

• The PT assumption imposes that

E[Yi1(0)|Di = 1]− E[Yi0(0)|Di = 1]

= E[Yi1(0)|Di = 0]− E[Yi0(0)|Di = 0]. (1)

• We assume throughout that the four expectations in (1) exist and

finite.
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Definition (PT Insensitivity to Functional Form)

Definition 1

We say that the PT assumption is invariant to transformations if

E[g(Yi1(0))|Di = 1]− E[g(Yi0(0))|Di = 1]

= E[g(Yi1(0))|Di = 0]− E[g(Yi0(0))|Di = 0],

for strictly monotonic functions g such that the expectations above

are finite.
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PT-Type Condition

Proposition 3.1

PT is invariant to transformations if and only if

FYi1(0)|Di=1(y)− FYi0(0)|Di=1(y)

= FYi1(0)|Di=0(y)− FYi0(0)|Di=0(y), for all y ∈ R, (2)

where Fyit(0)|Di=d(y) is the cumulative distribution function of

Yit(0)|Di = d.

• The proof is given in the following pages, which is the same as the

proof provided in p.739 of Roth and Sant’Anna (2023).

• Note that, if the outcome is continuous, the PT of CDFs is

equivalent to the PT of PDFs (almost everywhere).
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Proof (Prop. 3.1)

• (⇐=) Suppose that (2) holds. Integrating on both sides of the

equation, it is easy to see that∫
g(y)FYi1(0)|Di=1 −

∫
g(y)FYi0(0)|Di=1

=

∫
g(y)FYi1(0)|Di=0 −

∫
g(y)FYi0(0)|Di=0 (3)

for any strictly monotonic g such that the integrals exist and are

finite. Noting that (3) is equivalent to the invariance of PT to

transformations, we obtain the desired result.
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• (=⇒) Suppose that PT is invariant to transformations, that is, (3)

holds for every strictly monotonic g such that the four expectations

in Definition 1 exsit and are finite.

• Consider the following functions: g1(y) = y, g2(y) = y − 1(y ≤ ỹ)

for any given ỹ ∈ R.

• Since g1 is strictly monotonic, PT holds under transformation of g1:

E[Yi1(0)|Di = 1]− E[Yi0(0)|Di = 1]

= E[Yi1(0)|Di = 0]− E[Yi0(0)|Di = 0],

which is equivalent to∫
ydFYi1(0)|Di=1 −

∫
ydFYi0(0)|Di=1

=

∫
ydFYi1(0)|Di=0 −

∫
ydFYi0(0)|Di=0.
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• Similarly, PT also holds under the strictly monotonic transformation

of g2:

E[Yi1(0)− 1(Yi1(0) ≤ ỹ)|Di = 1]− E[Yi0(0)− 1(Yi0(0) ≤ ỹ)|Di = 1]

= E[Yi1(0)− 1(Yi1(0) ≤ ỹ)|Di = 0]− E[Yi0(0)− 1(Yi0(0) ≤ ỹ)|Di = 0],

which is equivalent to∫
{y − 1(y ≤ ỹ)}dFYi1(0)|Di=1 −

∫
{y − 1(y ≤ ỹ)}dFYi0(0)|Di=1

=

∫
{y − 1(y ≤ ỹ)}dFYi1(0)|Di=0 −

∫
{y − 1(y ≤ ỹ)}dFYi0(0)|Di=0.

• Combinig these results, we obtain∫
1(y ≤ ỹ)dFYi1(0)|Di=1 −

∫
1(y ≤ ỹ)dFYi0(0)|Di=1

=

∫
1(y ≤ ỹ)dFYi1(0)|Di=0 −

∫
1(y ≤ ỹ)dFYi0(0)|Di=0.

• Noting that ỹ is arbitary, the definition of CDF immediately leads to

eqation (2), which is desired.
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How Can Distributions Satisfying the PT-Type Condition be Generated?

Proposition 3.2

Suppose that the distributions of Yit(0)|Di = d for all d, t ∈ {0, 1}
have a Radom-Nikodym density with respect to a common dom-

inating, positive σ-finite measure. Then PT is invariant to trans-

formations if and only if there exist

• θ ∈ [0, 1], and

• CDFs Gt(·) and Hd(·) depending only on time and group,

respectively,

such that

FYit(0)|Di=d(y) = θGt(y) + (1− θ)Hd(y),

for all y ∈ R and d, t ∈ {0, 1}. (4)
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Proof (Prop. 3.2)

• The following proof is the same as one provided in pp.745-746 of

Roth and Sant’Anna (2023).

• By Prop. 3.1, it is sufficient to show that (2) ⇐⇒ (4).

• (⇐=) Note that Hd(y) does not depend on time. Under (4), the

LHS of (2) reduces to

(LHS of (2)) = θ(G1(y)−G0(y)).

• By the same argument, the RHS of (2) also reduces to

(RHS of (2)) = θ(G1(y)−G0(y)).

• Combining these results will immediately lead to (2), which is

desired.
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• (=⇒) Let Y denote the parameter space for Y (0), and

Yy = {ỹ ∈ Y|ỹ ≤ y}.

• Recall the assumption that the distributions of

Yit(0)|Di = d (d, t ∈ {0, 1}) have a Radon-Nikodym density w.r.t. a

common dominating, positive σ-finite measure (namely, λ).

• By this assumption, we can write

FYit(0)|Di=d(y) =

∫
Yy

fYit(0)|Di=ddλ,

where fYit(0)|Di=d is the density (the Radom-Nikodym derivative).

• Under (2):

FYi1(0)|Di=1(y)− FYi0(0)|Di=1(y)

= FYi1(0)|Di=0(y)− FYi0(0)|Di=0(y),

it holds that

fYi1(0)|Di=1(y)− fYi0(0)|Di=1(y)

= fYi1(0)|Di=0(y)− fYi0(0)|Di=0(y), λ almost everywhere.
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• To finalize the proof, we introduce the following lemma:

Lemma A.1

Suppose that the CDFs F1 and F2 are such that

Fj(y) =

∫
Yy

fjdλ.

Then, we can decompose Fj(y) as

Fj(y) = (1− θ)Fmin(y) + θF̃j(y) for j = 1, 2,

where

• Fmin and F̃j are CDFs,

• θ ∈ [0, 1], and

• θ and F̃j depend only on f1 and f2 through f1 − f2.

• Applying Lemma A.1 to the four CDFs on both sides of (2), we

obtain the disired result (4).
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Implications from Prop. 3.2

• Proposition 3.2 shows that PT of CDFs is satisfied if and only if the

untreated potential outcomes for each group and time can be

represented as a mixture of a common time-varying distribution that

does not depend on group (with weight θ) and a group-specific

distribution taht does not depend on time (with weight 1− θ).

• This implies that there are three cases in which PT will be

insensitive to functional form, depanding on the value of θ

• Case 1 (θ = 1): Random Assignment

• Case 2 (θ = 0): Stationary Y (0)

• Case 3 (0 < θ < 1): Non-random Assignment and

Nonstationarity
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Case 1: Random Assignment

• PT is insensitive to functional form when it holds that

FYit(0)|Di=d(y) = Gt(y) for all y ∈ R and d, t ∈ {0, 1}.

Note that the term Gt(y) does not depend on group.

• This case corresponds with imposing that the distributions of

untreated potential outcomes Y (0) for treated and comparison

groups are the same in each period, i.e.,

FYit(0)|Di=1(y) = FYit(0)|Di=0(y)

for all t = 0, 1, and all y.

• This can occur under (as-if) random assignment of treatment.
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Case 2: Stationarity of Untreated Potential Outcomes of Each Group

• PT is insensitive to functional form when it holds that

FYit(0)|Di=d(y) = Hd(y) for all y ∈ R and d, t ∈ {0, 1}.

Note that the term Hd(y) does not depend on time.

• This case corresponds with imposing that the distribution of

untreated potential outcome Y (0) for both the treated and

comparison popuations does not depend on time, i.e.,

FYi1(0)|Di=d(y) = FYi0(0)|Di=d(y)

for all d = 0, 1, and all y.
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Case 3: Non-random Assignment and Nonstationarity

• PT is insensitive to functional form when it holds for 0 < θ < 1 that

FYit(0)|Di=d(y) = θGt(y) + (1− θ)Hd(y) for all y ∈ R and d, t ∈ {0, 1}.

• This case corresponds with a hybrid of the above two cases.

• In each period, we can partition the treated and comparison groups

so that

• θ fraction of each group have the same distribution Gt, as if

they were rondomly assigned, and

• 1− θ fraction of each group have a group-specific distribution

Hd that does not depend on time (i.e, 1− θ fraction have

stationary potential outcomes).

• In principle, it is possible for the units in the θ and 1− θ partitions

to change across periods. However, it is difficult to imagine

coresponding practical/empirical senarios. Thus, Roth and

Sant’Anna (2023) mention in abstract only the case in which the

population can be partitioned into the above two fractions. 22



Examples 1 and 2

• Example 1 provides a simplified illustration of the original PT (1),

using the binary outcome Yi ∈ {0, 1}.

• Example 2 describes the hypothetical case in which Yit(0)|Di = d is

normally distributed for all d and t, In this example, (2) can hold

only if either

• both treated and comparison groups have the same distribution

of untreated potential outcome Y (0) in each period; or

• both groups have the group-specific distributions of Y (0)

which do not change over time.

23



Example 3

• Example 3 provides an illustration/simulation of Case 3.

• The distributions of untreated potential outcomes are generated by

FYit(0)|Di=d(y) =
1

2
Gt(y) +

1

2
Hd(y)

Gt ∼ lognormal(2 + t, 1), Hd ∼ lognormal(3 + d, 1).

for each d = 0, 1; t = 0, 1.

• As can be seen in (a) and (b) of Figure 1, the distributions of Y (0)

for the treated and comparison groups differ from each other in

both time periods (pre-treatment and post-treatment periods).

• Figure 1-(c) shows that the change in the PDFs is the same for

both groups.

• Table 1 also implies that PT invariance is considered to be plausible,

computing sample means of each groups’ Y (0)’s and log Y (0)’s.
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Remarks 3 and 4

• Remark 3: The following empirical papers use a DiD design to

estimate the effects of treatment on the distribution of an outcome:

Almond, Hoynes, and Schanzenbach (2011); Cengiz, Dube, Lindner,

and Zipperer (2019); and Stepner (2019).

• Such distributional analyses using DiD are required to ensure that

one out of three scenarios (Cases 1, 2, and 3) disucussed above

holds.

• Remark 4: Roth and Sant’Anna (2023) consider identification of the

full counterfactual distribution of the treated group Yi1(0)|Di = 1,

which can be recovered under condition (2). Related literature

include Athey and Imbens (2006); Bonhomme and Sauder (2011);

and Callaway and Li (2019).
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Testable Implications of

Invariance to Transformations



Falsification Test

• (2) can be rewritten as

FYi1(0)|Di=1(y)

= FYi0(0)|Di=1(y) + FYi1(0)|Di=0(y)− FYi0(0)|Di=0(y). (5)

• The LHS of (5) is a CDF, and thus must be weakly increasing.

• However, this is not guaranteed of the RHS of (5).

• Thus, we can falsify condition (5) if we reject the following null

hypothesis:

H0: the RHS of (5) is weakly increasing in y.
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Falsification Test for the Invariance of PT

• For simplicity, we focus on the case in which y has finite support Y
and the null hypothesis is equivalent to testing that the implied

distribution has nonnegative mass at all support points.

• That is, we are interested in testing that

fYi1(0)|Di=1(y)

= fYi0(0)|Di=1(y) + fYi1(0)|Di=0(y)− fYi0(0)|Di=0(y) ≥ 0

for all y ∈ Y , (6)

where fYit(0)|Di=d(y) = E[1(Yit(0) = y)|Di = d] is the probability

mass function of Yit(0)|Di = d at y.

• In practice, using the sample analogue of fYi1(0)|Di=1(y), the null

hypothesis can be renewed as

H0 : E[f̂Yi1(0)|Di=1(y)] ≥ 0 for all y.

• This can be tested using methods of the moment inequality

literature (Canay and Shaikh, 2017). 28



Caveats on Pre-Testing

• Note that failure to reject the null hypothesis does not necessarily

imply that PT is insensitive to functional form.

• The falsification test is a pre-testing, which may induce certain

problems. Roth (2022) considers such problems arising with

pre-testing in DiD settings.
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