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Introduction



Post-Selection

• High-Dimensional Data: In empirical studies, researchers start

with a large pool of candidate variables, and they do not know

a priori which are relevant. This is especially problematic

when there are more variables than observations, since then

the model cannot be identified.

• Post-Selection: In such settings, researchers often let the data
decide which variables to include in the model.

• Fit a linear model with all variables included, observe which

ones are significant at level α, and then refit the linear model

with only those variables included.

• Information Criterion (AIC, BIC), Regularization (LASSO) etc.

4



Inference after Selection (1)

• However, a problem is arising with such post-selection: the

p-values can no longer be trusted, since the variables that are

selected will tend to be those that are significant.

• Intuitively, we are “overfitting” to a particular realization of

the data.
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Inference after Selection (2)

• Let us formalize the problem: Consider the standard linear

regression setup, where the response y ∈ Rn is generated

from a multivariate normal distribution:

y ∼ Normal(µ, σ2In), (1.1)

where µ is modeled as a linear function of predictors

x1, · · · ,xp ∈ Rn, and σ2 is assumed known.1

1We consider the more realistic case where σ2 is unknown in Section 8.1.
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Inference after Selection (3)

• We choose a subset M ⊂ 1, · · · , p and ask for the linear

combination of the predictors in M that minimizes the

expected error.

• That is,

βM ≡ argmin
bM

E||y −XMbM ||2 = X+
Mµ, (1.2)

where X+
M ≡

(
XT

MXM

)−1
XT

M is the pseudo-inverse of XM .

• Note that (1.2) implies that the targets βM
j and βM ′

j in

different models (M ̸= M ′) are in general different.

• This is simply a restatement of the well-known fact: A

regression coefficient describes the effect of a predictor,

adjusting for the other predictors in the model.

• In general, the coefficient of a predictor cannot be compared

across different models.
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Inference after Selection (4)

• Thus, “inference after selection” is ambiguous in linear

regression because the target of inference changes with the

selected model. 2

2Berk, Brown, Buja, Zhang, and Zhao (2013) [4]
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Post-Selection Inference in Linear Regression

• The target of inference changes with the selected model. Note

that the rondomness is actually in the choice of which

parameters to consider (not in the parameters themselves).

• Consider that there are a priori p2
p−1

well-defined population

parameters, one for each coefficient in all 2p possible models:

{βM
j : M ⊂ {1, · · · , p, j ∈ M}.}

We only ever form inferences for the selected parameters βM̂
j

in the selected model M̂ .

• This adaptive choice can lead undesirable frequency

properties. 3

3Benjamini and Yekutieli (2005) [3], Benjamini, Heller and Yekutieli (2009) [2]
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Confidence Interval

• We want a confidence interval CM̂
j for a parameter βM̂

j . We

hope CM̂
j has the following property:

P
(
βM̂
j ∈ CM̂

j

)
≥ 1− α.

• However, the event βM̂
j ∈ CM̂

j is not well-defined because βM
j

is undefined when j /∈ M .

• Berk et al. (2013) [4] suggest two ways around this issue:

conditional coverage and simultaneous coverage.
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Conditional Coverage

• We form an interval for βM
j if and only if model M is

selected. That is, it makes sense to condition on this event.

• Hence, we might require that the confidence interval CM
j

satisfy

P
(
βM
j ∈ CM

j | M̂ = M
)
≥ 1− α. (2.1)

• The benefit of this approach is that we avoid ever having to

compare coefficients across two different models M ̸= M ′.
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Conditional Coverage: Data Spliting

• Another way to understand conditioning on the model is to

consider data spliting, 4 an approach to post-selection

inference that most statisticians would agree is valid.

• In data spliting, the data is divided into two halves, with one

half used to select the model and the other used to conduct

inference.

• Inferences obtained by data spliting are only valid conditional

on the model that was selected on the first half of the data. 5

• Therefore, conditional coverage is a reasonable frequency

property to require of a post-selection confidence interval.

4Cox (1975) [5]
5Fithian, Sun and Taylor (2014) [8]

12



Simultaneous Coverage

• It also makes sense to talk about events that are defined

simultaneously over all j ∈ M̂ .

• Berk et al. (2013) [4] propose controlling the familywise error

rate

FWER = P
(
βM̂
j /∈ CM̂

j for any j ∈ M̂
)
, (2.2)

but this is very stringent when many predictors are involved.
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Simultaneous Coverage: FCR & pFCR

• It is restrictive to control FWER (the probability of making

any error). Instead, we can control the expected proportion of

errors, although “proportion of errors” is ambiguous in the

event that we select zero variables.

• Benjamini and Yekutieli (2005) [3] simply declare the error to

be zero when |M | = 0:

FCR ≡ E

[
|{j ∈ M̂ : βM̂

j /∈ CM̂
j }|

|M̂ |
; |M̂ | > 0

]
. (2.3)

• Storey (2003) [22] suggests conditioning on |M̂ | > 0:

pFCR ≡ E

[
|{j ∈ M̂ : βM̂

j /∈ CM̂
j }|

|M̂ |

∣∣∣∣∣ |M̂ | > 0

]
. (2.4)

• Since FCR = pFCR · P(|M̂ | > 0), pFCR control implies FCR

control. 14



Revisiting Conditional Coverage

• The two ways above (conditional coverage and simultaneous

coverage) are related: Conditional coverage (2.1) implies

pFCR (2.4) control (and hence, FCR (2.3) control).

Lemma 2.1

• Consider a family of intervals {CM̂
j }j∈M̂ that each

have conditional (1− α) coverage:

P
(
βM̂
j /∈ CM̂

j

∣∣∣M̂ = M
)
≤ α for all M and j ∈ M.

• Then, FCR ≤ pFCR ≤ α.
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Proof of Lemma 2.1

• Condition on M̂ and iterate expectations:

pFCR = E

[
E

[
|j ∈ M̂ : βM̂

j /∈ CM̂
j |

|M̂ |

∣∣∣∣∣|M̂ | > 0

]]

= E

∑j∈M̂ P
(
βM̂
j /∈ CM̂

j

∣∣∣M̂)
|M̂ |

∣∣∣∣∣∣|M̂ | > 0


· · · · · · by (2.1) · · · · · ·

≤ E

[
α|M̂ |
|M̂ |

∣∣∣∣∣|M̂ | > 0

]
= α.
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Around Lemma 2.1

• Theorem 2 in Weinstein, Fithian and Benjamini (2013) [29]

proves a special case of Lemma 2.1 for a particular selection

procedure.

• Proposition 11 in Fithian, Sun and Taylor (2014) [8] provides

a more general resuly.

• However, the result of Lemma 2.1 is sufficient to establish

that conditional coverage is a sensible criterion to consider in

post-selection inference.
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How to Construct CI?

• To construct an interval with an interval with conditional

coverage, we need to understand the conditional distribution

y |
{
M̂(y) = M

}
, y ∼ Normal(µ, σ2I).

• One of the main contributions of Lee et al. (2016) [1] is to

show that this distribution is indeed possible to characterize,

making valid post-selection inference feasible in the context of

linear regression.
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Outline



Post-Selection Intervals with Conditional Coverage

• We have argued that post-selection intervals for regression

coefficients should have 1− α coverage conditional on the

selected model:

P
(
βM
j ∈ CM

j

∣∣∣M̂ = M
)
≥ 1− α.

• To obtain an interval CM
j with this property, we study the

conditional distribution

ηT
My |

{
M̂ = M

}
, (3.1)

which will more generally allow conditional inference for

parameters of the form ηT
Mµ. In particular, the regression

coefficients βM
j = eTj X

+
Mµ can be written in in this form, as

can many other linear contrasts.
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Outline (1)

• Lee et al. (2016) [1] focus on the specific case where lasso is

used to select the model M̂ .

• We begin in Section 4 by characterizing the event {M̂ = M}
for the lasso. As it turns out, this event is a union of

polyhedra. More precisely, the event {M̂ = M}, that specifies
the model and the signs of the selected variables, is a

polyhedron of the form

{y ∈ Rn : A(M, sM )y ≤ b(M, sm)} .
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Outline (2)

• Therefore, if we condition on both the model and the signs,

then we only need to study

ηTy|{Ay ≤ b}. (3.2)

We do this in Section 5.

• It turns out that this conditional distribution is essentially a

(univariate) truncated Gaussian. We use this to derive a

statistic F z(ηTy) whose distribution given {Ay ≤ b} is

Unif(0, 1).
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Related Work (1)

• The resulting post-selection test has a similar structure to the

pathwise significance tests of Lockhart et al. (2014) [14] and

Taylor et al. (2014) [23], which also are conditional tests.

• While their significance tests are specifically intended for the

path context, our framework allows more general questions

about the model the lasso selects.

• We can test the model at any value of λ or form confidence

intervals for an individual coeeficient in the model.
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Related Work (2)

• Javanmard and Montanari (2013) [9], van de Geer et al.
(2013) [28], Zhang and Zhang (2014) [30] are also parallel
literatures on confidence intervals for coefficients in high
dimensional linear models based on the lasso estimator.

• Their target is β0 (the coefficients in the true model) rather

than βM̂ (the coefficients in the selected model).

• The two coefficients β0 and βM̂ will not be the same unless

M̂ happens to contain all nonzero coefficients of β0.

• Inference for βM̂ requires assumptions about correctness of

the linear model and sparsity of β0.

• Potscher and Schneider (2010) [18] consider confidence

intervals for the hard-thresholding and soft-thresholding

estimators in the case of orthogonal design.

• Instead, our approach regards the selected model as a linear

approximation to the truth, a view shared by Berk et al.

(2013) [4] and Miller (2002) [15]. 23



Related Work (3)

• The idea of post-selection inference conditional on the selected

model appears in Potscher (1991) [17], although the notion of

inference conditional on certain relevant subsets dates back to

Fisher (1956) [7]. See also Robinson (1979) [19].

• Leeb and Potscher (2005, 2006) [11], [12] obtained a number

of negative results about estimating the distribution of a

post-selection estimator, although they note their results do

not necessarily preclude the possibility of post-selection

inference.

• To the contrary, we show that conditioning on the selected

model can produce reasonable confidence intervals in a wide

variety of situations.
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Related Work (4)

• Inference conditional on selection has also apppeared in

literature on the winner’s curse: Sampson and Sill (2005)

[20], Sill and Sampson (2009) [21], Zhong and Prentice

(2008) [31], Zollner and Pritchard (2007). These works are

not really associated with model selection in linear regression,

though they employ a similar approach to inference.
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The Lasso and its Selection Event



Lasso

• We apply our post-selection inference procedure to the model

selected by the lasso (Tibshirani, 1996 [25]).

• The lasso estimate is the solution to the usual least squares

problem with an additional ℓ1 penalty on the coefficients:

β̂ ∈ argmin
β

1

2
||y −Xβ||22 + λ||β||1. (4.1)

• The ℓ1 penalty shrinks many of the coefficients to exactly

zero. The tradeoff between sparsity and fit to the data is

controlled by the penalty parameter λ ≥ 0.

• However, the distribution of the lasso estimator β̂ is known

only when n >> p (Knight and Fu, 2000 [10]), and even then,

only asymptotically.
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Model-Selection by Lasso

• Since the lasso produces sparse solutions, we can define model

selected by the lasso to be the set of predictors with nonzero

coefficients:

M̂ = {j : β̂j ̸= 0}.

• Then, the post-selection inference seeks to make inferences

about βM , given {M̂ = M}, as defined in (1.2).
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KKT Conditions

• Let us focus on characterizing the event {M̂ = M}.
• Let ŝ be a vector of signs of β̂.

• Since β̂ is the solution to the lasso problem (4.1), it is

necessary and sufficient that they satisfy the KKT conditions:

XT (Xβ̂ − y) + λŝ = 0, (4.2)ŝi = sign(β̂j) if β̂j ̸= 0,

ŝi ∈ [−1, 1] if β̂j = 0.
(4.3)
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Equicorrelation Set

• Following Tibshirani (2013) [26], we consider the

equicorrelation set

M̂ = {i ∈ {1, · · · , p} : |ŝj | = 1}. (4.4)

• Notice that we have implicitly identified the model M̂ with

the equicorrelation set.

• Since |ŝi| = 1 for any β̂i ̸= 0, the equicorrelation set contains

all predictors with nonzero coefficients, although it may also

include some predictors with zero coefficients.

• However, for almost every λ, the equicorrelation set is

precisely the set of predictors with nonzero coefficients.

• Then, it is easier to first characterize {(M̂, ŝ) = (M, s)} and

obtain {M̂ = M} as a corollary by taking a union over the

possible signs.
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Lemma 4.1

Lemma 4.1

• Assume the columns of X are in general posotion

(Tibshirani, 2013 [26]).

• Let M ⊂ {1, · · · , p} and s ∈ {−1, 1}|M | be a

candidate set of variables and their signs, respectively.

• Define the random variables

w(M, s) := (XT
MXM )−1(XT

My − λs), (4.5)

u(M, s) := XT
−M (XM )+s+

1

λ
XT

−M (1− PM )y,

(4.6)

where PM ≡ XM (XMXM )−1XM is projection onto

the column span of XM .
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Lemma 4.1 (cont’d)

• Then, the selection procedure can be rewritten in terms

of w and u as

{(M̂, ŝ) = (M, s)}
= {sign (w(M, s)) = s, ||u(M, s)||∞ < 1}. (4.7)

Proof of Lemma 4.1

• First, we rewrite the KKT conditions (4.2) by partitioning

them according to the equicorrelation set M̂ , adopting the

convention that −M̂ means “variables not in M̂”:

XT
M̂
(XM̂ β̂M̂ − y) + λŝM̂ = 0,

XT
−M̂

(XM̂ β̂M̂ − y) + λŝ−M̂ = 0,

sign
(
β̂M̂

)
= ŝM̂ , ||ŝ−M̂ ||∞ < 1.
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• Since the KKT conditions are necessary and sufficient for a

solution, we obtain that {(M̂, ŝ) = (M, s)} if and only if

there exist w and u satisfying

XT
M (XMw − y) + λs = 0,

XT
−M (XMw − y) + λu = 0,

sign(w) = s, ||u||∞ < 1.

• We can solve the first two equations for w and u to obtain

the equivalent set of conditions

w = (XT
MXM )−1(XT

My − λs),

u = XT
−M (XT

M )+s+
1

λ
XT

−M (1− PM )y,

sign(w) = s, ||u||−∞ < 1,

where the first two are the definitions of w and u given in

(4.5) and (4.6), and the last two are the conditions on w and

u given in (4.7). 32



Proposition 4.2

• Lemma 4.1 says that the event {(M̂, ŝ) = (M, s)} can be

rewritten as affine constraints on y.

• This is because w and u are already affine functions of y, and

the constraints sign(·) = s and || · ||∞ < 1 can also be

rewritten in terms of affine constraints.

• Proposition 4.2 makes this explicit.
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Proposition 4.2

• Let w and u be defined as in (4.5) and (4.6).

• Then,

{sign(w) = s, ||u||∞ < 1}

=

{(
A0(M, s)

A1(M, s)

)
y <

(
b0(M, s)

b1(M, s)

)}
(4.8)

where A0, b0 encode the inactive constraints

{||u||∞ < 1}, and A1, b1 encode the active constraints

{sign(w) = s}.
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Proposition 4.2 (cont’d)

• These matrices have the explicit forms

A0(M, s) =
1

λ

(
XT

−M (1− PM )

−XT
−M (1− PM )

)
,

b0(M, s) =

(
1−XT

−M (XT
M )+s

1+XT
−M (XT

M )+s

)
,

A1(M, s) = −diag(s)(XT
MXM )−1XT

M ,

b1(M, s) = −λdiag(s)(XT
MXM )−1s.
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Proof of Proposition 4.2

• First, substituting expression (4.5) for w, we rewrite the

active constraints as

{sign(w) = s} = {diag(s)w > 0}
= {diag(s)(XT

MXM )−1(XT
My − λs) > 0}

= {A1(M, s)y < b1(M, s)}.

• Next, substituting expression (4.6) for u, we rewrite the

inactive constraints as

{||u||∞ < 1} = {−1 < XT
−M (XM )+s+

1

λ
XT

−M (1− PM )y < 1}

= {A0(M, s)y < b0(M, s)}.
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Characterization of {M̂ = M, ŝ = s}

• Combining Lemma 4.1 and Proposition 4.2, we obtain the

following.

Proposition 4.3

• Let A(M, s) =

(
A0(M, s)

A1(M, s)

)
and

b(M, s) =

(
b0(M, s)

b1(M, s)

)
, where Ai and bi are defined

in Proposition 4.2.

• Then,

{M̂ = M, ŝ = s} = {A(M, s)y ≤ b(M, s)}.
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Characterization of {M̂ = M}

• As a corollary, {M̂ = M} is simply the union of the above

events over all possible sign patterns.

Corollary 4.4

{M̂ = M} =
⋃

s∈{−1,1}|M|

{A(M, s)y ≤ b(M, s)}.
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Illustration of Theorem 4.3 & Corollary 4.4

• Fig. 1 illustrates the lasso partitions of Rn into polyhedra

according to the selected model and signs of the coefficients

(Suppose p = 2, n = 3).

• The shaded area corresponds to the event {M̂ = {1, 3}},
which is a union of two polyherda.

• Note that the signs patterns {+,−} and {−,+} are not

possible for the model {1, 3} (Such polyherda do not exist).
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Conditional Distribution ηT
My | {M̂ = M}

• In order to obtain inference conditional on the model, we need

to understand the distribution of

ηT
My | {M̂ = M}.

• As we saw in the previous section, {M̂ = M} is a union of

polyhedra, which makes it easier to condition on both the

model and the signs,

ηT
My | {M̂ = M, ŝ = s}.

since the conditioning event is a single polyhedron (Theorem

4.3):

{M̂ = M, ŝ = s} = {A(M, s)y ≤ b(M, s)}.
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• Note that inferences that are valid conditional on this finer

event will also be valid conditional on {M̂ = M}.
• Indeed, if a confidence interval CM

j for βM
j has (1− α)

coverage conditional on the model and signs:

P
(
βM
j ∈ CM

j

∣∣∣M̂ = M, ŝ = s
)
≥ 1− α,

then it will also have (1− α) coverage conditional only on the

model (by the Law of Total Probability):

P
(
βM
j ∈ CM

j

∣∣∣M̂ = M
)

=
∑
s

P
(
βM
j ∈ CM

j

∣∣∣M̂ = M, ŝ = s
)
P(ŝ = s|M̂ = M)

≥
∑
s

(1− α)P(ŝ = s|M̂ = M)

= 1− α.
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• This section is devided into two subsections:

• First, we study how to condition on a single polyhedron. This

will allow us to condition on {M̂ = M, ŝ = s}.
• Then we extend the framework to condition on a union of

polyhedra, which will allow us to condition only on the model

{M̂ = M}.
• The inferences obtained by conditioning on the model in

general be more efficient (i.e., narrower intervals, more

powerful tests), at the price of more computation.
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Conditioning on a Single Polyhedron

• Suppose that we observe y ∼ Normal(µ,Σ) and η ∈ Rn is

some direction of interest.

• To understand the distribution of

ηTy|{Ay ≤ b}, (5.1)

we rewrite {Ay ≤ b} in terms of ηTy and a component z

which is independent of ηTy. That component is

z ≡ (In− cηT )y, (5.2)

where c ≡ Ση(ηTΣη)−1. (5.3)

• It is easy to verify that z is uncorrelated with, and hence

independent of, ηTy. Note that, in the case where Σ = σ2In,

z is simply the residual (In − Pη)y from projecting y onto η.

• Now, we can rewrite {Ay ≤ b} in terms of ηTy and z.
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Lemma 5.1

Lemma 5.1

• Let z be defined as in (5.2) and c as in (5.3).

• Then, the conditioning set can be rewritten as follows:

{Ay ≤ b} =
{
V−(z) ≤ ηTy ≤ V+(z), V0(z) ≥ 0

}
,

where V−(z) ≡ max
j:(Ac)j<0

bj − (Az)j
(Ac)j

, (5.4)

V+(z) ≡ min
j:(Ac)j>0

bj − (Az)j
(Ac)j

, (5.5)

V0(z) ≡ min
j:(Ac)j=0

bj − (Az)j . (5.6)

• Since V−(z), V+(z), and V0(z) are functions of z

only, (5.4)-(5.6) are independent of ηTy.
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Proof of Lemma 5.1

• We can decompose y = c(ηTy) + z and rewrite the

polyhedron as

{Ay ≤ b} =
{
A
(
c(ηTy) + z

)
≤ b
}

=
{
Ac(ηTy) ≤ b−Az

}
=
{
(Ac)j(η

Ty) ≤ bj − (Az)j for all j
}

=


ηTy ≤ bj − (Az)j

(Ac)j
, for j : (Ac)j > 0,

ηTy ≥ bj − (Az)j
(Ac)j

, for j : (Ac)j < 0,

0 ≤ bj − (Az)j , for j : (Ac)j = 0,

where in the last step we have devided the components into

three categories depending on whether (Ac)j > 0, < 0, or

= 0, since this affects the direction of the inequality (or

whether we can divide at all).
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• Since ηTy is the same quantity for all j, it must be at least

the maximum of the lower bounds V−(z), and no more than

the minimum of the upper bounds V+(z).

• Lemma 5.1 tells us that[
ηTy|{Ay ≤ b}

] d
=
[
ηTy|{V−(z) ≤ ηTy ≤ V+(z) , V0(z)}

]
.

(5.7)

• Since V+(z), V−(z), V0(z) are independent of ηTy, they

behave as “fixed” quantities.

• Thus, ηTy is conditionally like a normal random variables,

truncated to be between V−(z) and V+(z).
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• We would like to be able to say

“ηTy|{Ay ≤ b}
∼ Truncated Normal(ηTy, σ2ηTΣη, V−(z), V+(z)), ”

but this is technically incorrect, since the distribution on the

right-hand side changes with z.

• By conditioning on the value of z, ηTy|{Ay ≤ b, z = z0} is a

truncated normal.

• We can then use the probability integral transform to obtain a

statistic F z(ηTy) that has a Unif(0, 1) distribution for any

value of z.

• Hence, F z(ηTy) will also have a Unif(0, 1) distribution

marginally over z.

• We make this precise in Theorem 5.2.
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Theorem 5.2

Theorem 5.2

• Let F
[a,b]
µ,σ2 denote the CDF of a Normal(µ, σ2) random

variable truncated to the interval [a, b], that is,

F
[a,b]
µ,σ2(x) =

Φ
(x−µ

σ

)
− Φ

(a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) , (5.8)

where Ω is the CDF of a Normal(0, 1) random variable.

• Then,

F
[V−(z),V+(z)]

ηTµ,ηTΣη
(ηTy)|{Ay ≤ b} ∼ Uniform(0, 1),

(5.9)

where V−(z) and V+(z) are defined in (5.4) and (5.5).
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Theorem 5.2 (cont’d)

• Furthermore,

[ηTy|Ay ≤ b, z = z0]

∼ Truncated Normal
(
ηTµ, σ2||η||2, V−(z), V+(z)

)
.

Proof of Theorem 5.2

• First, apply Lemma 5.1:

[ηTy|Ay ≤ b, z = z0]

d
= [ηTy|V−(z) ≤ ηTy ≤ V+(z), V0(z) ≥ 0, z = z0]

d
= [ηTy|V−(z0) ≤ ηTy ≤ V+(z0), V0(z0) ≥ 0, z = z0].

• The only random quantities left are ηTy and z.
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• Now we can eliminate z = z0 from the condition using

independence:

[ηTy|Ay ≤ b, z = z0]

d
= [ηTy|V−(z0) ≤ ηTy ≤ V+(z0)]

∼ Truncated Normal(ηTy, σ2||η||2, V−(z0), V+(z0)).

• Let

F z(ηTy) ≡ F
[V−(z),V+(z)]

ηTµ,ηTΣη
(ηTy).

• We can apply the probability integral transform to the above

result to obtain

[F z(ηTy)|Ay ≤ b, z = z0]

d
= [F z0(ηTy)|Ay ≤ b, z = z0]

∼ Uniform(0, 1).
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• If we let pX denote the dendity of a random variable X given

{Ay ≤ b}, what we have just shown is that

pF z(ηTy)|z(t|z0) ≡
pF z(ηTy),z(t, z0)

pz(z0)

= 1[0,1](f)

for any z0.

• The desired result now follows by integrating over z0:

pF z(ηTy)|z(t) =

∫
pF z(ηTy)|z(t|z0)pz(z0)dz0

=

∫
1[0,1](t)pz(z0)dz0

= 1[0,1](t)
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Conditioning on a Union of Polyhedra

• We have just characterized the distribution of ηTy,

conditional on y falling into a single polyhedron {Ay ≤ b}.
• We obtain such a polyhedron if we condition on both the

model and the signs {M̂ = M, ˆs = s}.
• If we want to only condition on the model {M̂ = M}, then
we will have to understand the distribution of ηTy, condition

on y falling into a union of such polyhedra

ηY y|
⋃
s

{Asy ≤ bs}. (5.10)
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• As Figure 3 makes clear, the argumment proceeds exactly as

before, except that ηTy is now truncated to a union of

intervals, instead of a single interval.

• There is a V− and a V+ for each possible sign patterns s, so

we index the intervals by the signs.

• This leads immediately to Theorem 5.3.
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Theorem 5.3

Theorem 5.3

• Let FS
µ,σ2 denote the CDF of a Normal(µ, σ2) random

variable truncated to the set S.

• Then,

F
∪s[V−

s (z),V+
s (z)]

ηTµ,ηTΣη
(ηTy)|{Asy ≤ bs} ∼ Uniform(0, 1),

(5.11)

where V−
s (z) and V+

s (z) are defined in (5.4) and (5.5)

and A = As and b = bs.

Proof of Theorem 5.3

• The proof is essentially the same as that of Theorem 5.2.
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Post-Selection Intervals for

Regression Coefficients



Post-Selction Intervals for Lasso-Selected Coefficients (1)

• Here we combine the characterization of the lasso selection

event (obtained in Section 4) with results about the

distribution of a Gaussian truncated to a polyhedron or union

of polyhedra (obtained in Section 5) to form post-selection

intervals for lasso-selected regression coefficients.

• The key link is that the lasso selection event can be expressed

as a union of polyhedra:

{M̂ = M} = ∪s∈{−1,1}|M|{M̂ = M, ˆs = s}

= ∪s∈{−1,1}|M|{A(M, s)y ≤ b(M, s)},

where A(M, s) and b(M, s) are defined in Theorem 4.3.

• Therefore, conditioning on selection is the same as

conditioning on a union of polyhedra, so we can apply the

framework of Section 5.
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Post-Selction Intervals for Lasso-Selected Coefficients (2)

• Recall that our goal is to form confidence intervals for

βM
j = eTj X

+
Mµ, with (1− α) coverage conditional on

{M̂ = M}.
• Taking η = (XT

Mej), we can use Theorem 5.3 to obtain

F
∪s[V−

s (z),V+
s (z)]

βM
j ,σ2||η||2 (ηTy)|{M̂ = M} ∼ Uniform(0, 1).

• This gives us a test statistic for testing any hypothesized value

of βM
j .

• We can invert this test to obtain a confidence set

CM
j ≡

{
βM
j :

α

2
≤ F

∪s[V−
s (z),V+

s (z)]

βM
j ,σ2||η||2 (ηTy) ≤ 1− α

2

}
.

(6.1)

• In fact, the set CM
j is an interval, as formalized in Theorem

6.1.
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Theorem 6.1

Theorem 6.1

• Let η = (X+
M )Tej .

• Let L and U be the (unique) values satisfying

F
∪s[V−

s (z),V+
s (z)]

L,σ2||η||2 (ηTy) = 1− α

2
,

F
∪s[V−

s (z),V+
s (z)]

U,σ2||η||2 (ηTy) =
α

2
.

• Then, [L,U ] is a (1− α) confidence interval for βM
j ,

conditional on {M̂ = M}, that is,

P
(
βM
j ∈ [L,U ]

∣∣∣M̂ = M
)
= 1− α. (6.2)
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Proof of Theorem 6.1

• By construction,

PβM
j

(
βM
j ∈ CM

j

∣∣∣M̂ = M
)
= 1− α,

where CM
j is defined in (6.1).

• The claim is that the set CM
j is in fact the interval [L,U ].

• To see this, we need to show that the test statistic

F
∪s[V−

s (z),V+
s (z)]

L,σ2||η||2 (ηTy) is monotone decreasing in βM
j so that

it crosses 1− α and α at unique values.

• This follows from the fact that the truncated Gaussian

distribution has monotone likelihood ratio in the mean

parameter.

• See Appendix A for details.
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Conditioning on a Single Polyhedron will be Less Efficient

• Alternatively, we could have conditioned on the signs, in

addition to the model, so that we would only have to

condition on a single polyhedron.

• We also showed in Section 5 that

F
V−
s (z),V+

s (z)

βM
j ,σ2||η||2 (ηTy)|{M̂ = M, ŝ = s} ∼ Uniform(0, 1).

• Inverting this statistic will produce intervals that have (1− α)

coverage conditional on {M̂ = M, ˆs = s}, and hence (1− α)

coverage conditional on {M̂ = M}.
• These intervals will be less efficient; They will in general be

wider.

• One may be willing to sacrifice statistical efficiency for

computational efficiency.
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Computational Cost

• The main cost in computing intervals according to Theorem

6.1 is determining the intervals [V−
s (z),V+

s (z)] for each

s ∈ {−1, 1}|M |.

• The number of such sign patterns is 2|M |.

• While this might be feasible when |M | is small, it is not

feasible when we select hundreds of variables.

• Conditioning on the signs means that we only have to

compute intervals [V−
s (z),V+

s (z)] for the sign pattern s that

was acutually observed.
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Trade-Off in Statistical Efficiency

• Figure 4 shows the tradeoff in statistical efficiency.

• When the signal is strong, as in th eleft-hand plot, there is

virtually no difference between the intervals obtained by

conditioning on just the model, or the model and signs.

• On the other hand, in the right-hand plot, we see that we can

obtain very wide intervals when the signal is weak.

• The widest intervals are for acutual noise variables, as

expected.
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Why are Post-Selection Intervals sometimes Wide?

• When a truncated Gaussian random variable Z is close to the

endpoints of the truncation interval [a, b], there are many

means µ that would be consistent with that observation,

which sometimes leads the wide intervals.

• Figure 5 shows confidence intervals for µ as a function of Z.

• When Z is far from the endpoints of the truncation interval,

we basically recover the nominal OLS intervals (i.e., not

adjusted for selection).
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Implications on Efficiency

• When the signal is strong, ηTy will be far from the endpoints

of the truncation region, so we obtain the nominal OLS

intervals.

• On the other hand, when a variable just barely entered the

model, then ηTy will be close to the edge of the truncation

region, and the interval will be very wide.
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Optimality

• We have derived a confidence interval CM
j whose conditional

coverage, given {M̂ = M}, is at least 1− α. The fact that

we have found such an interval is not remarkable, since many

such intervals have this property.

• However, given two intervals with tha same coverage, we

generally prefer the shorter one.

• This problem is considered in Fithian, Sun and Taylor (2014)

[8] where it is shown that CM
j is, with one small tweak, the

shortest interval among all unbiased intervals with (1− α)

coverage.
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• Unbiasedness is a common restriction to ensure the existence

of an optimal interval (Lehmann and Romano, 2005 [13]). An

unbiased interval C for a parameter θ is one which cobers no

other parameter θ′ with probability more than 1− α:

Pθ(θ
′ ∈ C) ≤ 1− α for all θ, θ′ ̸= θ. (6.3)

• The shortest unbiased interval for βM
j , among all intervals

with conditional 1− α coverage, resembles to the interval

[L,U ] in Theorem 6.1. The critical values L and U were

chosen symmetrically so that the pivot has α
2 area in either

tail.

• However, it may be possible to obtain a shorter intervals on

average by allocating the probability unequally between the

two tails. Theorem 5 of Fithian. Sun and Taylor (2014) [8]

provides a general formula for obtaining shortest unbiased

intervals in exponential families.
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Data Example



Simulation
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Extensions



Estimation of σ2
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Elastic Net
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Conclusion



Conclusion

• Model selection and inference have long been regarded as

conflicting goals in linear regression.

• Following the lead of Berk et al. (2013), we have proposed a

framework for post-selection inference that conditions on

which model was selected, that is, the event {M̂ = M}.
• We characterize this event for the lasso and derive optimal

and exact confidence intervals for linear contrasts ηTµ,

conditional on {M̂ = M}.
• With this general framework, we can form post-selection

intervals for regression coefficients, equipping practitioners

with a way to obtain “valid” intervals even after model

selection.
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