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Kaneko & Toyama (2025)

• A semiparametric discrete choice model

• Proposing nonparametric sieve approximation of income effect

• Resulting in more accurate estimation of demand curvature,

price elasiticity, and welfare changes.

• Empirical application1

• A feebate policy in the Japanese automobile industry2

• High pass-through rate

• More significant merger effects (Toyota & Honda)

1To be skipped in the class.
2Subsidy for eco-friendly cars.
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Introduction



Consumer Demand

• Accurate measurement of consumer demand is critical.

• Price elasticity and substitution patterns are often what firms

must consider.

• Decision-making on pricing in oligopolistic markets

• Evaluating the welfare consequences
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Specification for Income Effects

• When estimating consumer demand for differentiated

products, it is common to rely on parametric specifications.

• However, such parametrizing often imposes strict restrictions

on the shape of demand curve.

• A semiparametric discrete choice model can adress this

concern:

• This allows for the flexible estimation of demand curvature

and price elasticity patterns.
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Demand Estimation with Flexible Income Effect

• Combine a method of sieve approximation (Chen, 2007) and

nested fixed point algorithm (BLP):

• First, approximate the income effect by nonparametric sieve

methods.

• Then, their model is closely aligns with the standard

parametric framework of BLP.

• Second, implement a nested fixed-point algorithm to run sieve

GMM estimation.
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Demand Model



Utility Maximization Problem

• Let U(m, j) denote the direct utility function.

• m is a dm dimensional vector representing the consumption of

continuous choice goods.

• j ∈ J = {0, 1, · · · , J} corresponds to an alternative in the

discrete choice decision, with J products available in the

market. The index j = 0 indicates the outside goods.

• The utility maximization problem is given by

max
(m,j)∈Rdm

+ ×J
U(m, j) (1)

s.t. P T
mm+ pj ≤ yi,

where Pm is a dm dimensional vector of prices of continuous

choice goods, pj is the price of alternative j, and yi is income.
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Conditional Indirect Utility Function

• Conditional on choice j in the discrete choice, the conditional

indirect utility function is defined as

V (Pm, y − pj , j) ≡ max
m∈Rdm

+

U(m, j) s.t.P T
mm ≤ yi − pj . (2)

Note that we define p0 = 0 as choosing the outside good

incurs no costs.

• Assume that the direct utility function satisfies

U(m, j) = v(j) + u(m). (3)

• The conditional indirect utility function can be rewritten as

V (Pm, y − pj , j) = v(j) + Ṽ (Pm, y − pj). (4)
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Income Effect

• Assume that the continuous good is a numeraire, with its

price represented by Pm. Then, we obtain

Ṽ (Pm, y − pj) = u

(
y − pj
Pm

)
,

implying that the utility from numeraire depends on the

disposal income y − pj after choosing alternative j.

• Define the income effect term by

f(y − pj) ≡ Ṽ (Pm, y − pj).

Note that f(y − pj) should be weakly-increasing.
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Conditional Indirect Utility Function

• Letting vij denote consumer i’s utility from a discrete choice

good j, we specify that

vij = βTXj + ξj + ϵij for j = 1, · · · J, (5)

vi0 = ϵi0. (6)

where Xj is a vector of observable characteristics of product

j, ξj represents its unobservable characteristics, and ϵij is an

IID idiosyncratic shock that follows the type I extreme-value

distribution.

• Hence, the conditonal indirect utility function of consumer i

when choosing j is given by

Vij =

f(yi − pj) + βTXj + ξj + ϵij for j = 1, · · · J,

f(yi) + ϵi0 for j = 0.
(7)
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Individual Choice Probability

• Define the choice set of consumer i as

Jit = {0} ∪ {j ∈ {1, · · · , Jt} : yit − pjt ≥ 0} , (8)

where Jt is the total number of products available in market t.

• Given the conditional indirect utility Vijt (7), the discrete

choice problem is described as

max
j∈Jit

Vijt. (9)

and the choice probability for consumer i selecting alternative
j is derived as

sijt(yit) =

1(yit ≥ pjt) · exp
(
f(yit − pjt) + βTXjt + ξit

)
exp (f(yit)) +

∑Jt

k=1 1(yit ≥ pkt) · exp (f(yit − pkt) + βTXkt + ξit)
.

(10)
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Market Share

• Letting yit follow the distribution of income Gt(yit), the

market share is given by

sjt =

∫
sijtdGt(yit). (11)

• Market demand qjt is given by

gjt = Nt × sjt

where Nt denote the market size.
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Practical Importance of the Flexible Income Effect

• Price Elasiticity: Avoid imposing any predetermined

restrictions on how own-price elasticity varies with price.

• Pass-Through Analysis: Avoid inherent restriction on the

demand curvature.

• Merger Analysis: Different curvatures of the demand funtion

lead different simulated merger outcomes even under the same

consumer demand with identical elasticities.
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Estimation Method



Estimation

• The utility function includes the nonparametric function

f(y − p) and the linear parameter β.

• Employ a sieve approximation for the nonparametric function

and incorporate it into the nested fixed-point (NFP)

algorithm.

• See Chen (2007) for sieve approximation, and BLP (1995) for

NFP algorithm.
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Sieve Approximation

• Approximate f(·) by the K-th order Bernstein polynomial,

i.e., by a linear function of the basis function

ΨK(x) = (bK0 (x), bK1 (x), · · · bKK(x))T and coefficients

Π = (π0, π1, · · ·πk)T :

f(x) ≃ BK(x) =

K∑
k=0

πkb
K
k (x) ≡ ΨK(x)TΠ (12)

where

bKk (x) =

(
K

k

)
xk(1− x)K−k, (13)

and letting x be normalized to [0, 1].
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Shape Restrictions & Normalization

• Select the Bernstein polynomial as a basis function.

• Recall that f(y − p) is weakly increasing (monotonicity). To

incorporate this restriction within estimation, we impose

constraints on the coefficients Π.

• Under πk ≤ πk+1 for all k, the derivative of BK(x) (12)

satisfies that

B′
K(x) = K

K−1∑
k=0

(πk+1 − πk)b
K−1
k (x) ≥ 0

for all k, which is the desired monotonicity.

• The level of the income effect cannot be identified. Thus,

letting π0 = 0, we normalize f(x) as f(0) = 0.
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Approximated Model

• Under the sieve approximation above, the market share
defined by (10) and (11) can be rewritten as

sjt =∫
1(yit ≥ pjt) · exp

(
ΨK(yit − pjt)

TΠ+ βTXjt+ ξjt
)

denom.
dGt(yit),

(14)

where the denominator is given by

exp
(
ΨK(yit)

TΠ
)

+

Jt∑
k=1

1(yit ≥ pjt) · exp
(
ΨK(yit − pjt)

TΠ+ βTXkt + ξjt
)

• Note that there emerges an endogeneity between the product

proce pjt and the unobserved product characteristics ξjt.

• Introduce IVs, for example, proposed by BLP, Konishi & Zhao

(2017), and Kitano (2022), among others. 16



Sieve GMM

• Moment Conditions: for b = 1, · · · , B,

E [ξjt(θ)pb(Xjt,Wjt)] = 0, (15)

where Xjt is a vector of exogenous variables, Wjt is a vector

of IVs, θ = (β,Π), {pb(Xjt,Wjt)}b=1,··· ,B is a sequence of

known functions that can approximate any real-valued

square-integrable functions of Xjt and Wjt as B → ∞.

• GMM Criterion:

ξ(θ)T P̃
(
P̃ T P̃

)−
P̃ T ξ(θ)T , (16)

where ξ(θ)T is a vector that stacks ξjt’s. The matrix

P̃ = [P, P ⊗X] denotes a matrix of instruments, for the

choice of which we follow Chetverikov et al. (2018).
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NFP Algorithm

• Caluculation of the objective function & numerical
optimization procedures are as follows:3

• 1. Caluculate the vector of mean utility δ by applying a

contraction-mapping algorithm.

• 2. Run a linear regression of δ on X and obtain β̂ and the

residual ξ̂jt.

• 3. Caluculate the value of the objective function (16).

• 4. Run a nonlinear optimization routine over Π. 4

• Inference: Generalized residual bootstrap (Chen & Pouzo,

2015).

3See BLP (1995) for details.
4Note that β appearing in the mean utility function can be obtained by

employing a linear GMM (concentration out: Nevo, 2001).

18



Monte Carlo & Empirical Example

See Sections IV, V, VI, and VII of Kaneko & Toyama (2025).
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Conclusion



Conclusion

• A new framework for a differentiated product demand model

with a nonparametric income effect

• Estimate the semiparametric model with endogeneity by

combining the NFP algorithm and a sieve approximation.

• Monte Carlo simulations suggest significant gains in

estimating the nonparametric term of the income effect by

incorporating the shape restriction (Skipped in the class).

• Applying their framework to Japanese automobile data, they

demonstrate the importance of a flexible income effect

specification (Skipped in the class).
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