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Introduction

e A semiparametric single index model is given by
Y = g(X" o) +u,
where

Y € R : a dependent variable,

X €RY:a g x 1 explanatory vector,

Bo € R?:a g x 1 vector of unknown parameters,
u € R : an error term which satisfies E(u | X) = 0,

g(+) : an unknown distribution function.



e Even though z is a ¢ x 1 vector, 7§ is a scalar of a single linear combination,

which is called a single index.

e By the form of the single index model, we obtain

E(Y | X) = g(X" 5o),

which means that the conditional expectation of Y only depends on the vector X

through a single index X7'f3.

e The model is semiparametric when 3 € RY is estimated with the parametric
methods and ¢(-) with the nonparametric methods.

If g(-) is the identity function, then the model turns out to be a linear regression
model.

If g(-) is the CDF of Normal(0, 1), then the model turns out to be a probit model.
If g() is the CDF of logistic distribution, then the model turns out to be a logistic
regression model.
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Binary Choice Models




Semiparametric Binary Choice Model

e Consider the following binary choice model:

v _ Lif Y =a+ XIB+e >0,
' 0if Y =a+X/B+¢<0.
To identify 3, some standardization on « is required.

e This model can be rewritten as

E(Y; | Xi) =P(Y; =1| X;)
=Pla+ X B+e>0)
=P(e; > X[ 8 - a) = g(X]B),

which means that the binary choice model is a special case of the single index
models.



e Suppose that g(-) were known. We would estimate 3 by maximum likelihood
methods. The likelihood function would be

L*(b) = P(e; > —X[b— )Xz Ve
X Ple; < —XTb— o)2i=1(1-Y3)
= g(XT0)Zi=Yi x {1 — g(XTp)}Zim Y,

and then the log-likelihood function would be

n

L(b) =) [Yilog g(X]b) + (1 — ;) log(1 — g(X]b))].
=1



Klein and Spady’s ( ) Binary Choice Estimator

e In reality, g(-) is unknown.
e Klein and Spady (1993) suggest to replace g(-) with the leave-one-out NW

xi-x)"s
Zj;éiK< 7 )YJ

x;-x;)Ts
Zj;éiK( -

e Making this substitution, and adding a trimming function, this leads to the

estimator g_; (X7 3) =

feasible likelihood criterion:
n

L(B) = ) [¥ilogg—i(X]B) + (1 - i) log(1 — g—s(X[ B))ILi(b),
i=1
where the trimming indicator should not be a function of §, but instead of a

preliminary estimator:
1(0) = 1 (Fxrs(X7B) > ).

with a preliminary estimator 3 and density estimator fXTB(')' 8


https://www.jstor.org/stable/2951556
https://www.jstor.org/stable/2951556

e The following asymptotic properties hold:

e under some regularity conditions, and
e assuming that the kernel k is of higher-order (must be of fourth-order).

e Define G(X!'8) = E[g(X] Bo) | XI'B]. Then we obtain the asymptotic
distribution:

V(B - 8) % Normal(0, ),

where the asymptotic variance is given by

d a 1 -t
QO=F|=G(X'B)—=G(XI'pT
o5 P g O X ) T = o (X T o))

e Klein and Spady's (1993) estimator achieves the semiparametric efficiency bound

for the single-index binary choice model (not for the general single-index model).


https://www.jstor.org/stable/2951556

Lewbel’s ( ) Estimator

e Consider the following binary choice model:
Y, = 1(Ui+XiTﬁ+€i >0)7

where v; is a (special) continuous regressor whose coefficient is normalized to be

one and X; is of dimension ¢.
e Let f(v|z) denote the conditional PDF of v; given Xj.
e Let F.(e| v,z) denote the conditional CDF of ¢; conditioned on (v;, X;).

10


https://www.sciencedirect.com/science/article/abs/pii/S0304407600000154

Assumption: Assume that F(e | v,x) = Fe(e | z).

e In words, here we assume that, conditional on z, ¢ is independent of the special
regressor v.

We also introduce an orthogonality condition: E(Xj;e;) = 0.

Identification:

_ ~ ~ Y, — 1(%‘ > 0)
B =E[X;XI|"'E[X;Y;], where YV; = *——*—_—
[ T E[X;Y] Pl | X))

Estimation: Use the sample analogue of identification result, replacing the unkown

quantity f(v; | X;) with its nonparametric kernel estimator ! .

'Random denominator problem to possibly arise

11



Lewbel’s ( ) Estimator:

Assumption: There exists a p x 1 vector Z; of IVs, which satisfies that
E(Zie;) =0, E(Z;X]') is non-singular, and Fi.(e,7 | v,2) = Fep(e, 7 | 2).

e We do not assume the orthogonality condition here.

e Identification: 2
_ ~ -~ Yi—1(v; > 0)
=E[Z, X 'E[Z;Y;], where V; = "1~
f =ElZX ] EIZYi], where Y; floi | Xi)
e Estimation: Use the sample analogue of identification result, replacing the unkown

quantity f(v; | X;) with its nonparametric kernel estimator. 3

2This “just-identification” can be easily extended to over-identified cases.
3Random denominator problem to possibly arise
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Lewbel’s ( ) Estimator:

e Consider the ordered response model defined as

J—-1

Y; = Zjl(aj < v; +XiT6+€i < aj+1),
j=0
where ¢g = —o0 and aj = +o0.
e Y is called the response variable, which takes values in the set {0,1,---,J — 1}.

o YV, =jif
CL]’<U@'—|—XZ-TB+EZ'<CLJ'+1.

o Let Xi; = 1 be the intercept and 51 =0 % .

“Required for identification in latent index models.

13


https://www.sciencedirect.com/science/article/abs/pii/S0304407600000154

SetY;; =1(Y; >j)forj=1,---,J—1.
Define A = E[X; X1]~! and A; as the jth row of A.

Identification:

aj = —AlE

iji - 1(’01 > 0)
f(vil X5)

J—1

-1y
S = (v > 0)

f(wil X3)

X; , foryj=1,---,J—1; and

X; , forl=2,---q.

Estimation: Use the sample analogue of identification results, replacing f(v;|X})

with its nonparametric kernel estimator.

Further Extension: These results can be extended to mulitinomial choices models,

partially linear latent variable models, and threshold and censored regression

14



Manski’s ( ) Maximum Score Estimator

e Consider the binary choice model:

0if Y =XIB+e<0,
med(e; | X;) =0 (<= med(Y* | X;) = X11).

{ 1ifVr=XTB+e >0,
7::

e Manski's maximum score estimator is defined as

n
B = argmgxzm(XiTﬁ >0) + (1 - Y)L(X] 8 <0),
=1

which is a LAD estimator of a linear median-regression model.
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https://www.sciencedirect.com/science/article/abs/pii/0304407675900329

Under some assumptions, Bs has strong consistency.

[ ]
e The rate of convergence is ns (Kim and Pollard, 1990).
e The limiting distribution is quite complex > and therefore not ideal for statistical

inferences.

e To approximate the asymptotic distribution, Manski and Thompson (1986) use a
bootstrap procedure.

®A distribution of a maximum of a multidimensional Brownian motion with quadratic drift.
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https://projecteuclid.org/journals/annals-of-statistics/volume-18/issue-1/Cube-Root-Asymptotics/10.1214/aos/1176347498.full
https://www.sciencedirect.com/science/article/abs/pii/0304407686900138

Horowitz’s ( ) Smoothed Maximum Score Estimator

e Consider the binary choice model:

1Y = XT84 >0,
) 0ifYr=XTB8+6 <0,

med(e; | X;) =0 (<= med(Y/ | X;) = X13).
e Horowitz's modified maximum score estimator is defined as
R 1 n XTB
= — 2y, - 1)G | ——— |,
B argmgxn;( i — 1) < W )
where G(-) is a p-times continuously differentiable CDF.
e Recall that Manski's criterion function has the indicator functions, which lead to
the lack of continuity.
e Horowitz (1992) modifies Manski's criterion, replacing the indicator functions with

a twice continuously differentiable function that retains the essential features. 17


https://www.jstor.org/stable/2951582

Under some assumptions, as n — oo; h = hy, > 0; and h — 0,

G( ZB>—>1(XT5>O)

The convergence rate is vVnh, and the asymptotic distribution is normal.

1
. C\ 251 __»
Taking h = (—) T for some 0 < ¢ < o0, the convergence rate becomes n= 2r+1.
n

-

With sufficiently large p, the convergence rate becomes close to n™ 2.
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Han’s ( ) Maximum Rank (Correlation) Estimator

e Consider the binary choice model:

Lif Y= XT84+ ¢ >0,

0if Y =XIB+e<0,
med(e; | X;) =0 (<= med(Y* | X;) = XI1).

i

e Han's maximum rank correlation estimator © is defined as

N 2 n n
B = argmgxmzzl(yé > Y)UXT B> X]B).

i=1 j>i

®Han’s estimator is defined using indicator functions as Manski's. While Manski's does not, Han's has
\/n-consistency and asymptotically normally distributed. It can be thought that the double-3" induce
some “smoothness.”

19


https://www.sciencedirect.com/science/article/abs/pii/0304407687900236

e To motivate the maximum rank correlation estimator, observe that
PY; > Y | Xi, X;) > P(Y; <Y | X, Xj),

whenever XZ-T;S’O > Xfﬁo, which can be derived from the monotonicity of CDF
and the independence of ¢;'s and Xj;'s.

e [nterpretation: When XiTﬁo > X]-Tﬂo, more likely than not Y; > Y.

e Let Gy (B) denote the criterion function. Han (1987) shows that E[Gx(5)] is
maximized at 3 = .

e Han (1987) also establishes the storng consistency.

e Sherman (1993) shows that the maximum rank correlation estimator is
V/n-consistent and has an asymptotically normal distribution. ’

"U-statistics

20
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More General Cases?

e Matzkin (1992) does not impose any parametric structure on either the
systematic function of the observed exogenous variable or on the distribution of
the random error term.
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https://www.jstor.org/stable/2951596

Multinomial Discrete Choice Models




Multinomial Discrete Choice Models

e Consider the case where an individual faces J > 2 choices.

Define Y;; = 1 if individual 7 selects alternative j € {1,---,J}; and Y;; =0
otherwise.

Set Fij = P(}/Zj =1 ‘ Xz) = E(Y;j | XZ)

The multiple choice equation is given in
Yij = Fij + 5.

The likelihood function is

n J
Z ZY;j lIlFij.

i=1 j=1

22



Semiparametric Approach

e Set

Fyj =E(Yy | Xib1, - Xi58,)
= g(Xi1 b1, XiyBy),
where the functional form of g(-) is unknown.

e Estimation methods are developed, for example, by Ichimura and Lee (1991); and
Lee (1995).
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General Semiparametric MLE




Ai's ( ) Semiparametric Maximum Likelihood Approach

e Ai (1997) considers a general semiparametric maximum likelihood estimation,
which covers many semiparametric models such as multi-index models, partially
linear models as special cases.
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