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Introduction

• A semiparametric single index model is given by

Y = g(XTβ0) + u,

where

Y ∈ R : a dependent variable,

X ∈ Rq : a q × 1 explanatory vector,

β0 ∈ Rq : a q × 1 vector of unknown parameters,

u ∈ R : an error term which satisfies E(u | X) = 0,

g(·) : an unknown distribution function.
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• Even though x is a q × 1 vector, xTβ0 is a scalar of a single linear combination,

which is called a single index.

• By the form of the single index model, we obtain

E(Y | X) = g(XTβ0),

which means that the conditional expectation of Y only depends on the vector X

through a single index XTβ0.

• The model is semiparametric when β ∈ Rq is estimated with the parametric
methods and g(·) with the nonparametric methods.

• If g(·) is the identity function, then the model turns out to be a linear regression

model.

• If g(·) is the CDF of Normal(0, 1), then the model turns out to be a probit model.

• If g(·) is the CDF of logistic distribution, then the model turns out to be a logistic

regression model.
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Textbooks

• Pagan and Ullah (1999, Chapter 7)

• Li and Racine (2007, Chapter 8)

• Horowitz (2009, Chapters 2 and 4)

• 西山・人見（2023，第 3章）
• 末石（2024，第 4章）
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Binary Choice Models



Semiparametric Binary Choice Model

• Consider the following binary choice model:

Yi =

{
1 if Y ⋆

i = α+XT
i β + ϵi > 0,

0 if Y ⋆
i = α+XT

i β + ϵi ≤ 0.

To identify β, some standardization on α is required.

• This model can be rewritten as

E(Yi | Xi) = P(Yi = 1 | Xi)

= P(α+XT
i β + ϵi > 0)

= P(ϵi > −XT
i β − α) ≡ g(XT

i β),

which means that the binary choice model is a special case of the single index

models.

6



• Suppose that g(·) were known. We would estimate β by maximum likelihood

methods. The likelihood function would be

L⋆(b) = P(ϵi > −XT
i b− α)

∑n
i=1 Yi

× P(ϵi ≤ −XT
i b− α)

∑n
i=1(1−Yi)

= g(XT
i b)

∑n
i=1 Yi × {1− g(XT

i b)}
∑n

i=1(1−Yi),

and then the log-likelihood function would be

L(b) =

n∑
i=1

[Yi log g(X
T
i b) + (1− Yi) log(1− g(XT

i b))].
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Klein and Spady’s (1993) Binary Choice Estimator

• In reality, g(·) is unknown.
• Klein and Spady (1993) suggest to replace g(·) with the leave-one-out NW

estimator ĝ−i(X
T
i β) =

∑
j ̸=i K

(
(Xi−Xj)

T β

h

)
Yj∑

j ̸=i K

(
(Xi−Xj)

T β

h

) .

• Making this substitution, and adding a trimming function, this leads to the

feasible likelihood criterion:

L(β) =

n∑
i=1

[Yi log ĝ−i(X
T
i β) + (1− Yi) log(1− ĝ−i(X

T
i β))]1i(b),

where the trimming indicator should not be a function of β, but instead of a

preliminary estimator:

1i(b) = 1
(
f̂XT β̃(X

T
i β̃) ≥ b

)
,

with a preliminary estimator β̃ and density estimator f̂XT β̃(·). 8
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• The following asymptotic properties hold:

• under some regularity conditions, and

• assuming that the kernel k is of higher-order (must be of fourth-order).

• Define G(XT
i β) = E[g(XT

i β0) | XT
i β]. Then we obtain the asymptotic

distribution:

√
n(β̂ − β)

d−→ Normal(0,Ω),

where the asymptotic variance is given by

Ω = E
[
∂

∂β
G(XT

i β)
∂

∂β
G(XT

i β)
T 1

g(XT
i β0)(1− g(XT

i β0))

]−1

.

• Klein and Spady’s (1993) estimator achieves the semiparametric efficiency bound

for the single-index binary choice model (not for the general single-index model).
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Lewbel’s (2000) Estimator

• Consider the following binary choice model:

Yi = 1(vi +XT
i β + ϵi > 0),

where vi is a (special) continuous regressor whose coefficient is normalized to be

one and Xi is of dimension q.

• Let f(v|x) denote the conditional PDF of vi given Xi.

• Let Fϵ(ϵ | v, x) denote the conditional CDF of ϵi conditioned on (vi, Xi).
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• Assumption: Assume that Fϵ(ϵ | v, x) = Fϵ(ϵ | x).
• In words, here we assume that, conditional on x, ϵ is independent of the special

regressor v.

• We also introduce an orthogonality condition: E(Xiϵi) = 0.

• Identification:

β = E[XiX
T
i ]

−1E[XiỸi], where Ỹi =
Yi − 1(vi > 0)

f(vi | Xi)
.

• Estimation: Use the sample analogue of identification result, replacing the unkown

quantity f(vi | Xi) with its nonparametric kernel estimator 1 .

1Random denominator problem to possibly arise
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Lewbel’s (2000) Estimator: EXTENSION 1

• Assumption: There exists a p× 1 vector Zi of IVs, which satisfies that

E(Ziϵi) = 0, E(ZiX
T
i ) is non-singular, and Fϵx(ϵ, x | v, z) = Fϵx(ϵ, x | z).

• We do not assume the orthogonality condition here.

• Identification: 2

β = E[ZiX
T
i ]

−1E[ZiỸi], where Ỹi =
Yi − 1(vi > 0)

f(vi | Xi)
.

• Estimation: Use the sample analogue of identification result, replacing the unkown

quantity f(vi | Xi) with its nonparametric kernel estimator. 3

2This “just-identification” can be easily extended to over-identified cases.
3Random denominator problem to possibly arise
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Lewbel’s (2000) Estimator: EXTENSION 2

• Consider the ordered response model defined as

Yi =

J−1∑
j=0

j1(aj < vi +XT
i β + ϵi < aj+1),

where a0 = −∞ and aJ = +∞.

• Yj is called the response variable, which takes values in the set {0, 1, · · · , J − 1}.
• Yi = j if

aj < vi +XT
i β + ϵi < aj+1.

• Let X1i = 1 be the intercept and β1 = 0 4 .
4Required for identification in latent index models.
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• Set Yji = 1(Yi ≥ j) for j = 1, · · · , J − 1.

• Define ∆ = E[XiX
T
i ]

−1 and ∆j as the jth row of ∆.

• Identification:

aj = −∆1E
[
Xi

Yji − 1(vi > 0)

f(vi|Xi)

]
, for j = 1, · · · , J − 1; and

bl = −∆jE

Xi

∑J−1
j=1 Yji

(J−1) − 1(vi > 0)

f(vi|Xi)

 , for l = 2, · · · , q.

• Estimation: Use the sample analogue of identification results, replacing f(vi|Xi)

with its nonparametric kernel estimator.

• Further Extension: These results can be extended to mulitinomial choices models,

partially linear latent variable models, and threshold and censored regression

models.
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Manski’s (1975) Maximum Score Estimator

• Consider the binary choice model:

Yi =

{
1 if Y ⋆

i = XT
i β + ϵi > 0,

0 if Y ⋆
i = XT

i β + ϵi ≤ 0,

med(ϵi | Xi) = 0 ( ⇐⇒ med(Y ⋆
i | Xi) = XT

i β).

• Manski’s maximum score estimator is defined as

β̂M = argmax
β

n∑
i=1

Yi1(X
T
i β ≥ 0) + (1− Yi)1(X

T
i β < 0),

which is a LAD estimator of a linear median-regression model.
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• Under some assumptions, β̂M has strong consistency.

• The rate of convergence is n− 1
3 (Kim and Pollard, 1990).

• The limiting distribution is quite complex 5 and therefore not ideal for statistical

inferences.

• To approximate the asymptotic distribution, Manski and Thompson (1986) use a

bootstrap procedure.

5A distribution of a maximum of a multidimensional Brownian motion with quadratic drift.
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Horowitz’s (1992) Smoothed Maximum Score Estimator

• Consider the binary choice model:

Yi =

{
1 if Y ⋆

i = XT
i β + ϵi > 0,

0 if Y ⋆
i = XT

i β + ϵi ≤ 0,

med(ϵi | Xi) = 0 ( ⇐⇒ med(Y ⋆
i | Xi) = XT

i β).

• Horowitz’s modified maximum score estimator is defined as

β̂H = argmax
β

1

n

n∑
i=1

(2Yi − 1)G

(
XT

i β

h

)
,

where G(·) is a p-times continuously differentiable CDF.

• Recall that Manski’s criterion function has the indicator functions, which lead to

the lack of continuity.

• Horowitz (1992) modifies Manski’s criterion, replacing the indicator functions with

a twice continuously differentiable function that retains the essential features.
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• Under some assumptions, as n → ∞;h = hn > 0; and h → 0,

G

(
XT

i β

h

)
→ 1(XT

i β ≥ 0).

• The convergence rate is
√
nh, and the asymptotic distribution is normal.

• Taking h =
( c

n

) 1
2p+1

for some 0 < c < ∞, the convergence rate becomes n− p
2p+1 .

• With sufficiently large p, the convergence rate becomes close to n− 1
2 .
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Han’s (1987) Maximum Rank (Correlation) Estimator

• Consider the binary choice model:

Yi =

{
1 if Y ⋆

i = XT
i β + ϵi > 0,

0 if Y ⋆
i = XT

i β + ϵi ≤ 0,

med(ϵi | Xi) = 0 ( ⇐⇒ med(Y ⋆
i | Xi) = XT

i β).

• Han’s maximum rank correlation estimator 6 is defined as

β̂ = argmax
β

2

n(n− 1)

n∑
i=1

n∑
j>i

1(Yi ≥ Yj)1(X
T
i β ≥ XT

i β).

6Han’s estimator is defined using indicator functions as Manski’s. While Manski’s does not, Han’s has
√
n-consistency and asymptotically normally distributed. It can be thought that the double-

∑
induce

some “smoothness.”
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• To motivate the maximum rank correlation estimator, observe that

P(Yi > Yj | Xi, Xj) ≥ P(Yi ≤ Yj | Xi, Xj),

whenever XT
i β0 ≥ XT

j β0, which can be derived from the monotonicity of CDF

and the independence of ϵi’s and Xi’s.

• Interpretation: When XT
i β0 ≥ XT

j β0, more likely than not Yi ≥ Yj .

• Let GH(β) denote the criterion function. Han (1987) shows that E[GH(β)] is

maximized at β = β0.

• Han (1987) also establishes the storng consistency.

• Sherman (1993) shows that the maximum rank correlation estimator is
√
n-consistent and has an asymptotically normal distribution. 7

7U -statistics
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More General Cases?

• Matzkin (1992) does not impose any parametric structure on either the

systematic function of the observed exogenous variable or on the distribution of

the random error term.
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Multinomial Discrete Choice Models



Multinomial Discrete Choice Models

• Consider the case where an individual faces J > 2 choices.

• Define Yij = 1 if individual i selects alternative j ∈ {1, · · · , J}; and Yij = 0

otherwise.

• Set Fij = P(Yij = 1 | Xi) = E(Yij | Xi).

• The multiple choice equation is given in

Yij = Fij + ϵij .

• The likelihood function is
n∑

i=1

J∑
j=1

Yij lnFij .
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Semiparametric Approach

• Set

Fij = E(Yij | XT
i1β1, · · ·XT

iJβJ)

= g(XT
i1β1, · · ·XT

iJβJ),

where the functional form of g(·) is unknown.
• Estimation methods are developed, for example, by Ichimura and Lee (1991); and

Lee (1995).
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General Semiparametric MLE



Ai’s (1997) Semiparametric Maximum Likelihood Approach

• Ai (1997) considers a general semiparametric maximum likelihood estimation,

which covers many semiparametric models such as multi-index models, partially

linear models as special cases.
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