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Introduction

e A semiparametric single index model is given by
Y = g(X" o) +u,
where

Y € R : a dependent variable,

X €RY:a g x 1 explanatory vector,

Bo € R?:a g x 1 vector of unknown parameters,
u € R : an error term which satisfies E(u | X) = 0,

g(+) : an unknown distribution function.



e Even though z is a ¢ x 1 vector, 7§ is a scalar of a single linear combination,

which is called a single index.

e By the form of the single index model, we obtain

E(Y | X) = g(X" 5o),

which means that the conditional expectation of Y only depends on the vector X

through a single index X7'f3.

e The model is semiparametric when 3 € RY is estimated with the parametric
methods and ¢(-) with the nonparametric methods.

If g(-) is the identity function, then the model turns out to be a linear regression
model.

If g(-) is the CDF of Normal(0, 1), then the model turns out to be a probit model.
If g() is the CDF of logistic distribution, then the model turns out to be a logistic
regression model.



Pagan and Ullah (1999, Chapter 7)
Li and Racine (2007, Chapter 8)
Horowitz (2009, Chapters 2 and 4)
o PhlL - AR (2023, #3%)

o KA (2024, 54 %)
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Identification




Identification Conditions

For the semiparametric single index model Y = g(z” 3y) + u, identification of 3y
and g(-) requires that

(i) = should not contain a constant/an intercept, and must contain at least
one continuous variable. Moreover, ||5p||=1.

(i) g(-) is differentiable and is not a constant function on the support of 27 3.

(iii) For the discrete components of x, varying the values of the discrete
variables will not divide the support of 27 3 into disjoint subsets.



Identification Condition (i)

e Note that the location and the scale of 5y are not identified.

e The vector z cannot include an intercept because the function g(-) (which is to be
estimated in nonparametric manners) includes any location and level shift.

e That is, 8y cannot contain a location parameter.

e Some normalization criterion (scale restrictions) for 3y are needed.

e One approach is to set ||5o]| = 1.

e The second approach is to set one component of 5y to equal one. This approach
requires that the variable corresponding to the component set to equal one to be
continuously distributed and has a non-zero coefficient.

e Then, & must be dimension 2 or larger. If x is one-dimensional, then By € R! is
simply normalized to 1, and the model is the one-dimensional nonparametric
regression E(Y | ) = g(x) with no semiparametric component.



Identification Conditions (ii) and (iii)

e The function g(-) cannot be a constant function and must be differentiable on the
support of 27 .

e X must contain at least one continuously distributed variable and this continuous
variable must have non-zero coefficient.

e If not, 275, only takes a discrete set of values and it would be impossible to identify
a continuous function g(-) on this discrete support.



Ichimura’s (1993) Method




Ichimura’s ( ) Method

e Suppose that the functional form of g(-) were known.
e Then we could estimate 3y by minimizing the least-squares criterion:
S - g(x7 B
i=1
with respect to .
e We could think about replacing g(-) with a nonparametric estimator g(-).

e However, since g(z) is the conditional mean of Y; given X! 8y = 2, g(-) depends
on unknown (3. thus we cannot estimate g(-) here.


https://www.sciencedirect.com/science/article/abs/pii/030440769390114K

Nevertheless, for a fixed value of 3, we can estimate
G(X{B) =E(Y: | X[ B) = E(9(X{ Bo) | Xi' B)-

In general G(XIB) # g(X]B).

When 8 = S, it holds that G(X! 8y) = g(X] Bo).

That is, conditioning on a general X! 3, G and g do not, in general, coincide,
while they coincide when XZ-TB = XiTBO.
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Ichimura’s ( ) Weighted Semiparametric Least Squares Estimation

e First, we estimate G(X] 3) with the leave-one-out NW estimator:

XTp-xTp
£k (S5

XTp-xT'p
>z K (M)

e Second, using the leave-one-out NW estimator CAJ_Z-(XZ-TB), we estimate [ with

G_i(XTB) =E_;(v; | XTB) =

o~

g = arg minz [YZ —G_i(XTp) 2w(Xi)1(X¢ € A,) =argmin S, (8), (1)
8 = 8

which is called Ichimura's estimator (the WSLS estimator).
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https://www.sciencedirect.com/science/article/abs/pii/030440769390114K

w(X;) is a nonnegative weight function.
As = {x : p(z"B) > 5, for Y € B}.

A, = {x: ||z — 2*|| < 2h, for Fz* € As}, which shrinks to As as n — oo and
h — 0.

1(X; € Ayn) is a trimming function to trim out small values of

o~ X7B B
PXIB) = — Z#z () so that we do not suffer from the random

denomlnator problem.
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Asymptotic Distribution of Ichimura’s ( ) Estimator

o Let B denote the semiparametric estimator of 3y obtained from minimizing S, (5).

e To derive the asymptotic distribution of 3 we introduce the following conditions:

The set As is compact, and the weight function w(+) is bounded and posotive on
Ajs. Define the set

D,={z:z2=2T8,6 € B,z € As}.

Letting p(-) denote the PDF of z € D,, p(:) is bounded below by a positive
constant for ¥z € D,
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https://www.sciencedirect.com/science/article/abs/pii/030440769390114K

Assumption 8.2

g(-) and p(-) are 3 times differentiable w.r.t. z = 2%. The third derivatives are
Lipschitz continuous uniformly over B for ¥z € D,.

Assumption 8.3

The kernel function is a bounded second order kernel, which has bounded support;
is twice differentiable; and its second derivative is Lipschitz continuous.

Assumption 8.4

E(]Y™|) < oo for 7m > 3. var(Y | z) is bounded and bounded away from zero

for Yz € As. L(hg—>0andnh8—>0asn—>oo.

nhTm=T1
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Theorem 8.1 (Asymptotic Distribution of Ichimura’s ( ) Estimator)

Under assumptions 8.1 through 8.4,

V(B — Bo) & Normal(0, ),
with

Q=vizvi
V = E{w(X:)(9\")? x (Xi — Ea(Xi | X7 50))(Xi — Ea(Xi | X{ o)™},
% = E{w(X;)o?(X:)(g”)? x (Xi — Ba(X; | XTBo))(Xi — Ea(X; | X7 50))T},

ag(v
()= 2| rg,

E4(X; | v) = E(X; | 2560 = v),
x4 has the distribution of X; conditional on X; € Ajs.

15


https://www.sciencedirect.com/science/article/abs/pii/030440769390114K

Proof (Theorem 8.1)

e See Ichimura (1993); and Hardle, Hall and Ichimura (1993) for the proof of
Theorem 8.1.

e Horowitz (2009) provides an excellent heuristic outline for the proof, using only
familiar Taylor series methods, the standard LLN, and the Lindeberg-Levy CLT.
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https://www.sciencedirect.com/science/article/abs/pii/030440769390114K
https://projecteuclid.org/journals/annals-of-statistics/volume-21/issue-1/Optimal-Smoothing-in-Single-Index-Models/10.1214/aos/1176349020.full
https://link.springer.com/book/10.1007/978-0-387-92870-8

Optimal Weight under Homoscedasticity

e We introduce the following homoscedasticity assumption:
2 2
E(ui | X;) = o”.

e Under this assumption, the optimal choice of w(-) is w(X;) = 1.
e In this case,
~ n ~
B =argming » (Vi — G_i(X] B)*)1(X; € Ay)
i=1
is semiparametrically efficient in the sense that 2; is the semiparametric variance
lower bound (conditional on X € Ay).
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Optimal Weight under Heteroscedasticity

e In general, E(u? | X;) = 02(X;).

e An infeasible case: If one assues that E(u? | X;) = 0?(X] By), that is, the
conditional variance depends only on the single index X 3y, the choice of
w(Xi) = Srxray

e We could employ a two-step procedure as follows.

can lead to a semiparametrically efficient estimation.

e Suppose that the conditional variance is a function of X[ 3y (Let o(X7 o)
denote it).
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Ist step: Use w(X;) = 1 to obtain a y/n-consistent estimator of f3.
Let Bo denote the estimator of 3y, and u; = Y; — §(XiTBO) denote the residual
obtained from BO.
We can obtain a consistent nonparametric estimator of the conditional variance:
a2(X1By).
. . . . . o 1 .
2nd step: Estimate /3y again using w(X;) = ST
1

B\O = argming i {Yz — @_Z(X;‘Fﬁ)}2

i=1

The estimator 3 is semiparametrically efficient because 7%(v) — 0?(v) converges
to zero at a particular rate uniformly over v € D,, (D, is the support of XiTﬁg). !

15%(XTB) can be used instead.
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Bandwidth Selection for Ichimura’s ( ) Estimator

qln(h)

o Recall that we assume in Assumption 8.4 that — 0 and nh® — 0 as
nh”"m-1
n — 0o, where m > 3 is a positive integer whose specific value depends on the

existence of the number of finite moments of Y along with the smoothness of the

unknown function g(-). 2

e The range of permissive smoothing parameters allows for optimal smoothing, i.e.,
h = O(n_é), which satisfies Assumption 8.4.

2Assumption 8.4 is a sufficient condition ensuring that nonparametric estimation of ¢ does not affect

the convergence rate of the parametric part.
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https://www.sciencedirect.com/science/article/abs/pii/030440769390114K

e Qur aim is to choose 3 close to fy, and h close to the value hgy, which minimize
the average of

E{g(X] Bo | X{ Bo) — 9(X] Bo)}*.

e Hardle, Hall and Ichimura (1993) suggest picking 5 and the bandwidth A jointly
by minimization of S, (/).
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https://projecteuclid.org/journals/annals-of-statistics/volume-21/issue-1/Optimal-Smoothing-in-Single-Index-Models/10.1214/aos/1176349020.full

e In the proof of Theorem 8.1, we can establish the following decomposition of the

least squares criterion:

1~ A
Sn(B,h) = = (Y;G_i(X]'B))?
(8,h) n; (X7'8))
1o 1o
=—) (YVi-GXIp)r+ = (X Bo) — g(XiBn))? 1
n;< G(X[B)) +n;(G (X Bo) — 9(Xifh))? + op(1)
= S(8) + T(h) + op(1).
e Minimize S, (f3, h) simultaneously over both (3, h) € B,, x H,, is equivalent to
e first minimizing S(/3) over 3 € B,,; and
e second minimizing T'(h) over h € H,,.
e Let (3,h) be the minimizers of S, (8, h).
e Suppose that we use the second order kernel. Hardle, Hall and Ichimura (1993)
show that the MSE optimal bandwidth satisfies

1 h p

h=0(n"s), AL
0
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https://projecteuclid.org/journals/annals-of-statistics/volume-21/issue-1/Optimal-Smoothing-in-Single-Index-Models/10.1214/aos/1176349020.full

Regularity Conditions in Ichimura (

For identification:
e A second order kernel
e h satisfies Assumption 8.4.

e E[[Y™|] < oo for Fm > 3.

Regularity Conditions in HHI (

For asymptotic properties:
o A higher order kernel (at least
e h= O(n_%)

e Y has moments of any order.

)

4)
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Direct Semiparametric Estimators




Direct Semiparametric Estimators for

e Here we review:

Hardle and Stoker's (1989) Average Derivative Estimator,

e Powell, Stock and Stoker's (1989) Density-Weighted Average Derivative Estimator,
e Li, Lu and Ullah's (2003) Estimator, and

Hristache, Juditsky and Spokoiny’s (2001) Improved Average Derivative Estimator.

e The advantage of the direct estimation method is that we can estimate 3y and
g(z™ By) directly without running the nonlinear least squares, which leads to the
computational simplicity.

o We still suffer from a finite-sample problem.
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https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-3/Direct-estimation-of-the-index-coefficient-in-a-single-index/10.1214/aos/1009210682.full

Hardle and Stoker’s ( ) Average Derivative Estimator

e Suppose that x is a ¢ X 1 vector of continuous variables.

e Then we obtain the average derivative of E(Y | X = z):
OE(Y | X =2

=] e

e Recall that the scale of Sy is not identified, which means that the constant
E [¢™M (2T By)] does not matter. That is, a normalized estimation of

E [%ﬁ(:'x)] is an estimation of normalized (3.

25


https://www.jstor.org/stable/2290074

o Let E(YZ | X;) denote the NW estimator of E(Y; | X;):

S VK (R
s K(Xi;Xj) :

e Assuming that the kernel function is differentiable, we can estimate [y, estimating
E [auzmx:a:)
ox

E(Y; | X;) =

] with its sample analogue:

P I OE(Y; | X;)
Bave_n; aX .

6(17.)6

ave’

e The scale normalization can also be implemented by

26



e An issue raised with this estimator is the random denominator problem, which
leads to a difficulty in the derivation of the asymptotic properties.

e Rilstone (1991) establishes the \/n-normality using a trimming function.
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https://www.jstor.org/stable/2526941

Bandwidth Selection

for Hardle and Stoker’s ( ) Average Derivative Estimator

e The estimation of 3y involves the g-dimensional multivariate nonparametric
estimation of the first order derivatives.

e Smoothing Parameters for fA'Elj)(X,Ij): Hardle and Tsybakov (1993) suggest to
choose the smoothing parameters hy, - -- , hy to minimize MSE of 5

e They show that the asymptotically optimal bandwidth is given by
2
hs = cgn 2¢tv+2 for all s =1,...,q, where ¢4 is the constant, and v is the order
of kernel.

e Powell and Stoker (1996) provide a method for estimating cs.

e Horowitz (2009) suggests to select hs based on bootstrap resampling.

28


https://www.jstor.org/stable/2290074
https://www.sciencedirect.com/science/article/abs/pii/030440769390112I
https://www.sciencedirect.com/science/article/abs/pii/0304407695017615
https://link.springer.com/book/10.1007/978-0-387-92870-8

e Smoothing Parameters for _E(X,;T‘ﬁn): Once we select the optimal hy's, we can
obtain an estimator of 5. Let (3, denote a generic estimator.

e We estimate Ely|z] = g(z Bo) by (27 Bn, h) = §(xT 3,). The smoothing
parameter associated with the scalar index 23, can be selected by least squares
cross-validation:

—argmlnz _i(XT B, h)]2.

e Under some regularity conditions, the selection of h is of order Op(n_%).
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Powell, Stock and Stoker’s ( )

Density-Weighted Average Derivative Estimator

e As we obtain the average derivative above, we also obtain the weighted average
derivative of E(Y | X = x):

E w(w)mygf:@} =E [w(m)g(l)(xTﬁo)] Bo.

30


https://www.jstor.org/stable/1913713

e Let w(x) be the density function f(z), and § denote the density-weighted average
derivative of E(Y | X = z).

e Then we obtain
B OE(YY | X =x)
0=E [f(X>8x]
= E [ £(0)gM (X" 50)]
— [ 4" ) )

= g(aTBo) () — 2 / o(27 B0) f O (&) f () .
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e Assume that f(z) = 0 at the boundary of the support of X. Then we observe
that g(x” o) f?(x) = 0, that is,

=2 / 9(27 o) f D () f () de

= —2E[g(X " o) fV (X)]
= —2E[Y f(X)).

e We can estimate § by its sample analogue:
2 n
< 1
i=1

where f_i(Xi) is the leave-one-out NW estimator of f(X):

~ 1 1\? X, — X;
o ().
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e There is no denominator messing with uniform convergence. There is only a
density estimator, no conditional mean needed.

e The textbook uses the NW estimator f(l)(XZ-) in (2), while Powell, Stock and

Stoker (1989) define their estimator using the leave-one-out NW estimator
(1) (X;).
e Here we proceed with Powell, Stock and Stoker (1989).
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https://www.jstor.org/stable/1913713
https://www.jstor.org/stable/1913713

e A useful representation of 5 is given by
~ -2 1\ X — X
0= ———— - Y, KW [ 22
n(n—1) ; %;Z <h> h

e Under some assumptions, if h — 0 and nh?t2 — oo hold, then the
density-weighted average derivative estimator ¢ satisfies that

~ ~

Vn(s — E[6]) 4 Normal(0, X5),

where X5 = 4E[02(X) fO(X) fMW(X)T] 4 4Var(f(X)gM (X)).
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e Recall that K (-) is differentiable and symmetric, that is, K1 (u) = — K1) (—u).
Then, we obtain the standard U-statistics form of 5

. A= A N o (Xi— X

_ 1 i~ X v

i--(3) v (1) () oo,
=1 j=1+1

e Letting Z; denote (Y,»,XZT)T and p,,(Z;, Z;) denote

L g (%) (Y; — Y;), 8 can be rewritten as

—afT
N n “1p-1 n
=1 j=i+1

e This representation of 5 permits a direct analysis of its asymptotic properties,
based on the asymptotic theory of U-statistics. Further discussions can be seen in
Serfling (1980); van der Vaart (1998, Chapter 12).


https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316481
https://www.cambridge.org/core/books/asymptotic-statistics/A3C7DAD3F7E66A1FA60E9C8FE132EE1D

The asymptotic bias is a bit complicated.

Let ¢ be the dimension of X, and set

g+4

o
5 if ¢ is even,
p:
3
% if ¢ is odd.

The kernel function K (-) for the estimation of f(-) is required to be of order at
least p.

The asymptotic bias is /n(E(8) — §) = O(n%hp), which is o(1) if nh?’ — 0.
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e nh? — 0 is violated if h is selected to be optimal for the estimation of f(-) or
fM(.). That is, this requirement needs the bandwidth h to undersmooth to
reduce the bias. Further discussions on the bandwidth selection follow in Section
8.4.

e Cattaneo, Crump and Jansson (2010, 2011) introduce another asymptotic theory
to relax strong assumptions .

e Nishiyama and Robinson (2005): Density-weighted average derivative estimators
can be refined by bootstrapping methods.
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https://www.tandfonline.com/doi/abs/10.1198/jasa.2010.tm09590
https://www.jstor.org/stable/24534508
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2005.00598.x

Li, Lu and Ullah’s ( ) Estimator

We consider the estimation of the average derivative E[g(") (X7 5y)] again.

We can also use the local polynomial method for the estimation of g™ (X7 5y).

Let g (X7 By) denote the kernel estimator of g™")(X;f), which is obtained from
an m-th order local polynomial regression.

~ 1
Li, Lu and Ullah (2003) suggest to use Bue = —g'" (X7 Bo) to estimate
n
B =ElgM (X7 5o)].
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https://www.tandfonline.com/doi/full/10.1080/10485250310001605450
https://www.tandfonline.com/doi/full/10.1080/10485250310001605450

e Their approach does not require the condition f(z) = 0 at the boundary of the
support of X. However, they require to assume that

e the support of X is a compact set, and that
e the density f(z) is bounded below by a positive constant at the support of X,

which avoids the use of a trimming function.

39



e Under the assumptions so far and some additional conditions, if we use a second

q
SRPI)

nap
order kernel, where nZagm — 0 and

p In(n)
the order of local polynomial estimation, then,

— oo with m denoting

\/ﬁ(ﬁave —B) 4, Normal (0, D+ var(g(l)(XTﬁo))> ,

R 02<X>f<1><x>f<1><X>T] |

FA(X)
e The proof of the asymptotic normality can be derived from U-statistics theory.
e Newey (1994) shows that the asymptotic variance does not depend on the specific

nonparametric estimation method.
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https://www.jstor.org/stable/3532868

Hristache, Juditsky and Spokoiny’s (

Improved Average Derivative Estimator

e Powell, Stock and Stoker's (1989) density-weighted average derivative estimator
requires the density of X to be increasingly smooth as the dimension of X
increases.

e This is necessary to make \/ﬁ(g— ) asymptotically normal with a mean of 0.

e Practical Consequence: The finite-sample performance of the density-weighted
average derivative estimator is likely to be deteriorated as the dimension of X
increases, especially if the density of X is not very smooth.

e Specifically, the estimator’s bias and MSE are likely to increase as the the
dimension of X increases.
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Hristache, Juditsky and Spokoiny (2001) introduce an iterated average derivative
estimator that overcomes this problem.

Their estimator is based on the observation that g(z7 3y) does not vary when x
varies in a direction that is orthogonal to fj.

Therefore, only the directional derivative of E(Y | X = x) along the direction of

is needed for estimation.

Suppose that this direction were known. Then estimating the directional
derivative would be a one-dimensional nonparametric estimation problem, and

there would be no curse of dimensionality.
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In practice, the direction of 5 is unknown.

Hristache, Juditsky and Spokoiny (2001) show that this can be estimated with

sufficient accuracy through an iterative procedure.

Their idea is to use prior information about the vector /3 for improving the quality
of the gradient estimate by extending a weighting kernel in the direction of small
directional derivatives, and they demonstrate that the whole procedure requires at
most 2log(n) iterations.

Under relatively mild assumptions, their estimator is y/n-consistent.

See Horowitz (2009, Section 2.6) for further discussions.
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Estimation of ¢(-)

e Let (3, denote a /n-consistent estimator of 3, or .
e Once we obtain 3,, we can estimate g(x7 ;) by

Sk ()
Zj:lK(grff)Tﬁn) ‘

: . : . _1
Recall that §3,, is a y/n-consistent estimator of 3, that is, 8, — By = Op(n~2),
This converges to zero faster than standard nonparametric estimators.
Then, the asymptotic distribution of g(x” 3,) is the same as that of g(z7 ).

g(a’ By) =

ko?(xT
Vnh[g(@" B,) — g(«" Bo) — th(:cg)] < Normal (O, M) :

a4



Generalized Cases?

e The direct average derivative estimation method discussed previously is applicable
only when x is a ¢ x 1 vector of continuous variables because the derivative w.r.t.

discrete variables is not defined.

e Horowitz and Hardle (1996) discuss how direct (noniterative) estimation can be
generalized to cases for which some components of z are discrete. Horowitz
(2009) provides an excellent overview of this method.
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https://www.jstor.org/stable/2291590
https://link.springer.com/book/10.1007/978-0-387-92870-8

Finite-Sample Problem

e Nonparametric estimation in the 1st stage may suffer from the curse of
dimensionality.

e In small-sample settings, the iterative method of Ichimura (1993) may be more
appealing as it avoids having to conduct high-dimensional nonparametric

estimation.
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Carroll, Fan, Gijbels and Wand ( )

e They consider the problem of estimating a general partially linear single index
model which contains both a partially linear model and a single index model as
special cases.
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