Supplementary Material 1 Review on Semiparametric Single Index Model

Hansen (2022, Sections 26.7-26.12)

Yasuyuki Matsumura (Kyoto University)

Last Updated: October 7, 2025

https://yasu0704xx.github.io

Introduction

A semiparametric single index model is given by

$$Y = g(X^T \beta_0) + u,$$

where

 $Y\in\mathbb{R}$: a dependent variable, $X\in\mathbb{R}^q$: a $q\times 1$ explanatory vector, $\beta_0\in\mathbb{R}^q$: a $q\times 1$ vector of unknown parameters, $u\in\mathbb{R}$: an error term which satisfies $\mathbb{E}(u\mid X)=0,$ $g(\cdot)$: an unknown distribution function.

- Even though x is a $q \times 1$ vector, $x^T \beta_0$ is a scalar of a single linear combination, which is called a single index.
- By the form of the single index model, we obtain

$$\mathbb{E}(Y \mid X) = g(X^T \beta_0),$$

which means that the conditional expectation of Y only depends on the vector X through a single index $X^T\beta_0$.

- The model is semiparametric when $\beta \in \mathbb{R}^q$ is estimated with the parametric methods and $g(\cdot)$ with the nonparametric methods.
 - If $g(\cdot)$ is the identity function, then the model turns out to be a linear regression model.
 - If $g(\cdot)$ is the CDF of Normal(0,1), then the model turns out to be a probit model.
 - If $g(\cdot)$ is the CDF of logistic distribution, then the model turns out to be a logistic regression model.

Textbooks

- Pagan and Ullah (1999, Chapter 7)
- Li and Racine (2007, Chapter 8)
- Horowitz (2009, Chapters 2 and 4)
- 西山・人見(2023, 第3章)
- 末石(2024, 第4章)

Contents

Identification

Ichimura's (1993) Method

Direct Semiparametric Estimators

Hardle and Stoker (1989)

Powell, Stock and Stoker (1989)

Li, Lu and Ullah (2003)

Hristache, Juditsky and Spokoiny (2001)

Identification

Identification Conditions

Proposition 8.1 (Identification of a Single Index Model)

For the semiparametric single index model $Y = g(x^T \beta_0) + u$, identification of β_0 and $g(\cdot)$ requires that

- (i) x should not contain a constant/an intercept, and must contain at least one continuous variable. Moreover, $\|\beta_0\|=1$.
- (ii) $g(\cdot)$ is differentiable and is not a constant function on the support of $x^T\beta_0$.
- (iii) For the discrete components of x, varying the values of the discrete variables will not divide the support of $x^T\beta_0$ into disjoint subsets.

Identification Condition (i)

- Note that the location and the scale of β_0 are not identified.
- The vector x cannot include an intercept because the function $g(\cdot)$ (which is to be estimated in nonparametric manners) includes any location and level shift.
 - That is, β_0 cannot contain a location parameter.
- Some normalization criterion (scale restrictions) for β_0 are needed.
 - One approach is to set $\|\beta_0\| = 1$.
 - The second approach is to set one component of β_0 to equal one. This approach requires that the variable corresponding to the component set to equal one to be continuously distributed and has a non-zero coefficient.
 - Then, x must be dimension 2 or larger. If x is one-dimensional, then $\beta_0 \in \mathbb{R}^1$ is simply normalized to 1, and the model is the one-dimensional nonparametric regression $E(Y \mid x) = g(x)$ with no semiparametric component.

Identification Conditions (ii) and (iii)

- The function $g(\cdot)$ cannot be a constant function and must be differentiable on the support of $x^T\beta_0$.
- x must contain at least one continuously distributed variable and this continuous variable must have non-zero coefficient.
 - If not, $x^T\beta_0$ only takes a discrete set of values and it would be impossible to identify a continuous function $g(\cdot)$ on this discrete support.

Ichimura's (1993) Method

Ichimura's (1993) Method

- Suppose that the functional form of $g(\cdot)$ were known.
- Then we could estimate β_0 by minimizing the least-squares criterion:

$$\sum_{i=1} \left[Y_i - g(X_i^T \beta) \right]^2$$

with respect to β .

- ullet We could think about replacing $g(\cdot)$ with a nonparametric estimator $\widehat{g}(\cdot)$.
- However, since g(z) is the conditional mean of Y_i given $X_i^T \beta_0 = z$, $g(\cdot)$ depends on unknown β_0 . thus we cannot estimate $g(\cdot)$ here.

• Nevertheless, for a fixed value of β , we can estimate

$$G(X_i^T \beta) := \mathbb{E}(Y_i \mid X_i^T \beta) = \mathbb{E}(g(X_i^T \beta_0) \mid X_i^T \beta).$$

- In general $G(X_i^T \beta) \neq g(X_i^T \beta)$.
- When $\beta = \beta_0$, it holds that $G(X_i^T \beta_0) = g(X_i^T \beta_0)$.
- That is, conditioning on a general $X_i^T\beta$, G and g do not, in general, coincide, while they coincide when $X_i^T\beta=X_i^T\beta_0$.

Ichimura's (1993) Weighted Semiparametric Least Squares Estimation

• First, we estimate $G(X_i^T\beta)$ with the leave-one-out NW estimator:

$$\widehat{G}_{-i}(X_i^T \beta) \equiv \widehat{\mathbb{E}}_{-i}(Y_i \mid X_i^T \beta) = \frac{\sum_{j \neq i} Y_j K\left(\frac{X_j^T \beta - X_i^T \beta}{h}\right)}{\sum_{j \neq i} K\left(\frac{X_j^T \beta - X_i^T \beta}{h}\right)}.$$

• Second, using the leave-one-out NW estimator $\widehat{G}_{-i}(X_i^T\beta)$, we estimate β with

$$\widehat{\beta} \equiv \underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left[Y_i - \widehat{G}_{-i}(X_i^T \beta) \right]^2 w(X_i) \mathbf{1}(X_i \in A_n) \equiv \underset{\beta}{\operatorname{arg\,min}} S_n(\beta), \quad (1)$$

which is called Ichimura's estimator (the WSLS estimator).

- $w(X_i)$ is a nonnegative weight function.
- $A_{\delta} = \{x : p(x^T \beta) \ge \delta, \text{ for } \forall \beta \in \mathcal{B}\}.$
- $A_n = \{x : ||x x^*|| \le 2h, \text{ for } \exists x^* \in A_\delta\}$, which shrinks to A_δ as $n \to \infty$ and $h \to 0$.
- $\mathbf{1}(X_i \in A_n)$ is a trimming function to trim out small values of $\widehat{p}(X_i^T\beta) = \frac{1}{nh} \sum_{j \neq i} K\left(\frac{X_j^T\beta X_i^T\beta}{h}\right)$, so that we do not suffer from the random denominator problem.

Asymptotic Distribution of Ichimura's (1993) Estimator

- Let $\widehat{\beta}$ denote the semiparametric estimator of β_0 obtained from minimizing $S_n(\beta)$.
- To derive the asymptotic distribution of $\widehat{\beta}$, we introduce the following conditions:

Assumption 8.1

The set A_δ is compact, and the weight function $w(\cdot)$ is bounded and posotive on A_δ . Define the set

$$D_z = \{z : z = x^T \beta, \beta \in \mathcal{B}, x \in A_\delta\}.$$

Letting $p(\cdot)$ denote the PDF of $z\in D_z$, $p(\cdot)$ is bounded below by a positive constant for $^\forall z\in D_z$

Assumption 8.2

 $g(\cdot)$ and $p(\cdot)$ are 3 times differentiable w.r.t. $z=x^{\beta}$. The third derivatives are Lipschitz continuous uniformly over \mathcal{B} for $\forall z \in D_z$.

Assumption 8.3

The kernel function is a bounded second order kernel, which has bounded support; is twice differentiable; and its second derivative is Lipschitz continuous.

Assumption 8.4

 $\mathbb{E}(|Y^m|) < \infty \text{ for } ^{\exists} m \geq 3. \text{ var}(Y \mid x) \text{ is bounded and bounded away from zero } \\ \text{for } ^{\forall} x \in A_{\delta}. \ \frac{q \ln(h)}{nh^{3+\frac{3}{m-1}}} \to 0 \text{ and } nh^8 \to 0 \text{ as } n \to \infty.$

Theorem 8.1 (Asymptotic Distribution of Ichimura's (1993) Estimator)

Under assumptions 8.1 through 8.4,

$$\sqrt{n}(\widehat{\beta} - \beta_0) \xrightarrow{d} \mathsf{Normal}(0, \Omega_I),$$

with

$$\Omega_{I} = V^{-1} \Sigma V^{-1},
V = \mathbb{E}\{w(X_{i})(g_{i}^{(1)})^{2} \times (X_{i} - E_{A}(X_{i} \mid X_{i}^{T} \beta_{0}))(X_{i} - E_{A}(X_{i} \mid X_{i}^{T} \beta_{0}))^{T}\},
\Sigma = \mathbb{E}\{w(X_{i})\sigma^{2}(X_{i})(g_{i}^{(1)})^{2} \times (X_{i} - E_{A}(X_{i} \mid X_{i}^{T} \beta_{0}))(X_{i} - E_{A}(X_{i} \mid X_{i}^{T} \beta_{0}))^{T}\},
(g_{i}^{(1)}) = \frac{\partial g(v)}{\partial v} \mid_{v = X_{i}^{T} \beta_{0}},
\mathbb{E}_{A}(X_{i} \mid v) = \mathbb{E}(X_{i} \mid X_{A}^{T} \beta_{0} = v),$$

 x_A has the distribution of X_i conditional on $X_i \in A_{\delta}$.

Proof (Theorem 8.1)

- See Ichimura (1993); and Hardle, Hall and Ichimura (1993) for the proof of Theorem 8.1.
- Horowitz (2009) provides an excellent heuristic outline for the proof, using only familiar Taylor series methods, the standard LLN, and the Lindeberg-Levy CLT.

Optimal Weight under Homoscedasticity

• We introduce the following homoscedasticity assumption:

$$\mathbb{E}(u_i^2 \mid X_i) = \sigma^2.$$

- Under this assumption, the optimal choice of $w(\cdot)$ is $w(X_i) = 1$.
- In this case,

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - \widehat{G}_{-i}(X_i^T \beta)^2) \mathbf{1}(X_i \in A_n)$$

is semiparametrically efficient in the sense that Ω_I is the semiparametric variance lower bound (conditional on $X \in A_\delta$).

Optimal Weight under Heteroscedasticity

- In general, $\mathbb{E}(u_i^2 \mid X_i) = \sigma^2(X_i)$.
- An infeasible case: If one assues that $\mathbb{E}(u_i^2 \mid X_i) = \sigma^2(X_i^T \beta_0)$, that is, the conditional variance depends only on the single index $X_i^T \beta_0$, the choice of $w(X_i) = \frac{1}{\sigma^2(X_i^T \beta_0)}$ can lead to a semiparametrically efficient estimation.
- We could employ a two-step procedure as follows.
- Suppose that the conditional variance is a function of $X_i^T\beta_0$ (Let $\sigma^2(X_i^T\beta_0)$ denote it).

- 1st step: Use $w(X_i) = 1$ to obtain a \sqrt{n} -consistent estimator of β_0 .
- Let $\tilde{\beta}_0$ denote the estimator of β_0 , and $\tilde{u}_i = Y_i \widehat{g}(X_i^T \tilde{\beta}_0)$ denote the residual obtained from $\tilde{\beta}_0$.
- We can obtain a consistent nonparametric estimator of the conditional variance: $\hat{\sigma}^2(X_i^T \tilde{\beta}_0)$.
- 2nd step: Estimate β_0 again using $w(X_i) = \frac{1}{\widehat{\sigma}^2(X_i^T \check{\beta}_0)}$:

$$\widehat{\beta}_0 = \arg\min_{\beta} \sum_{i=1}^n \left[Y_i - \widehat{G}_{-i}(X_i^T \beta) \right]^2 \frac{1}{\widehat{\sigma}^2(X_i^T \widetilde{\beta}_0)} \mathbf{1}(X_i \in A_n).$$

• The estimator $\widehat{\beta}_0$ is semiparametrically efficient because $\widehat{\sigma}^2(v) - \sigma^2(v)$ converges to zero at a particular rate uniformly over $v \in D_v$ (D_v is the support of $X_i^T \beta_0$). ¹

 $^{{}^{1}\}widehat{\sigma}^{2}(X_{i}^{T}\beta)$ can be used instead.

Bandwidth Selection for Ichimura's (1993) Estimator

- Recall that we assume in Assumption 8.4 that $\frac{q \ln(h)}{nh^{3+\frac{3}{m-1}}} \to 0$ and $nh^8 \to 0$ as $n \to \infty$, where $m \ge 3$ is a positive integer whose specific value depends on the existence of the number of finite moments of Y along with the smoothness of the unknown function $g(\cdot)$. ²
- The range of permissive smoothing parameters allows for optimal smoothing, i.e., $h=O(n^{-\frac{1}{5}})$, which satisfies Assumption 8.4.

 $^{^2}$ Assumption 8.4 is a sufficient condition ensuring that nonparametric estimation of g does not affect the convergence rate of the parametric part.

• Our aim is to choose $\widehat{\beta}$ close to β_0 , and h close to the value h_0 , which minimize the average of

$$\mathbb{E}\{\widehat{g}(X_i^T\beta_0 \mid X_i^T\beta_0) - g(X_i^T\beta_0)\}^2.$$

• Hardle, Hall and Ichimura (1993) suggest picking β and the bandwidth h jointly by minimization of $S_n(\beta)$.

• In the proof of Theorem 8.1, we can establish the following decomposition of the least squares criterion:

$$S_n(\beta, h) = \frac{1}{n} \sum_{i=1}^n (Y_i \widehat{G}_{-i}(X_i^T \beta))^2$$

$$= \frac{1}{n} \sum_{i=1}^n (Y_i - G(X_i^T \beta))^2 + \frac{1}{n} \sum_{i=1}^n (G_{-i}(X_i^T \beta_0) - g(X_i \beta_0))^2 + op(1)$$

$$\equiv S(\beta) + T(h) + op(1).$$

- Minimize $S_n(\beta, h)$ simultaneously over both $(\beta, h) \in \mathcal{B}_n \times \mathcal{H}_n$ is equivalent to
 - first minimizing $S(\beta)$ over $\beta \in \mathcal{B}_n$; and
 - second minimizing T(h) over $h \in \mathcal{H}_n$.
- Let $(\widehat{\beta}, \widehat{h})$ be the minimizers of $S_n(\beta, h)$.
- Suppose that we use the second order kernel. Hardle, Hall and Ichimura (1993) show that the MSE optimal bandwidth satisfies

$$\widehat{h} = O(n^{-\frac{1}{5}}), \quad \frac{\widehat{h}}{h_0} \xrightarrow{p} 1.$$

Regularity Conditions in Ichimura (1993)

For identification:

- A second order kernel
- *h* satisfies Assumption 8.4.
- $\mathbb{E}[|Y^m|] < \infty$ for $\exists m \geq 3$.

Regularity Conditions in HHI (1993)

For asymptotic properties:

- A higher order kernel (at least 4)
- $h = O(n^{-\frac{1}{5}})$
- Y has moments of any order.

Direct Semiparametric Estimators

Direct Semiparametric Estimators for β

- Here we review:
 - Hardle and Stoker's (1989) Average Derivative Estimator,
 - Powell, Stock and Stoker's (1989) Density-Weighted Average Derivative Estimator,
 - Li, Lu and Ullah's (2003) Estimator, and
 - Hristache, Juditsky and Spokoiny's (2001) Improved Average Derivative Estimator.
- The advantage of the direct estimation method is that we can estimate β_0 and $g(x^T\beta_0)$ directly without running the nonlinear least squares, which leads to the computational simplicity.
- We still suffer from a finite-sample problem.

Hardle and Stoker's (1989) Average Derivative Estimator

- Suppose that x is a $q \times 1$ vector of continuous variables.
- Then we obtain the average derivative of $\mathbb{E}(Y \mid X = x)$:

$$\mathbb{E}\left[\frac{\partial \mathbb{E}(Y \mid X = x)}{\partial x}\right] = \mathbb{E}\left[g^{(1)}(x^T \beta_0)\right] \beta_0$$

• Recall that the scale of β_0 is not identified, which means that the constant $\mathbb{E}\left[g^{(1)}(x^T\beta_0)\right]$ does not matter. That is, a normalized estimation of $\mathbb{E}\left[\frac{\partial \mathbb{E}(Y|X=x)}{\partial x}\right]$ is an estimation of normalized β_0 .

• Let $\widehat{\mathbb{E}}(Y_i \mid X_i)$ denote the NW estimator of $\mathbb{E}(Y_i \mid X_i)$:

$$\widehat{\mathbb{E}}(Y_i \mid X_i) = \frac{\sum_{j=1}^n Y_j K\left(\frac{X_i - X_j}{a}\right)}{\sum_{j=1}^n K\left(\frac{X_i - X_j}{a}\right)}.$$

• Assuming that the kernel function is differentiable, we can estimate β_0 , estimating $\mathbb{E}\left[\frac{\partial \mathbb{E}(Y|X=x)}{\partial x}\right]$ with its sample analogue:

$$\tilde{\beta}_{ave} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \widehat{\mathbb{E}}(Y_i \mid X_i)}{\partial X_i}.$$

• The scale normalization can also be implemented by $\frac{\beta_{ave}}{|\tilde{\beta}_{ave}|}$.

- An issue raised with this estimator is the random denominator problem, which leads to a difficulty in the derivation of the asymptotic properties.
- Rilstone (1991) establishes the \sqrt{n} -normality using a trimming function.

Bandwidth Selection for Hardle and Stoker's (1989) Average Derivative Estimator

- The estimation of β_0 involves the q-dimensional multivariate nonparametric estimation of the first order derivatives.
- Smoothing Parameters for $\widehat{f}_{-i}^{(1)}(X_i)$: Hardle and Tsybakov (1993) suggest to choose the smoothing parameters h_1, \dots, h_q to minimize MSE of $\widehat{\delta}$.
- They show that the asymptotically optimal bandwidth is given by $h_s=c_s n^{-\frac{2}{2q+v+2}}, \text{ for all } s=1,\ldots,q,$ where c_s is the constant, and v is the order of kernel.
- Powell and Stoker (1996) provide a method for estimating c_s .
- Horowitz (2009) suggests to select h_s based on bootstrap resampling.

- Smoothing Parameters for $\widehat{g}(X_i^T \beta_n)$: Once we select the optimal h_s 's, we can obtain an estimator of β . Let β_n denote a generic estimator.
- We estimate $\mathbb{E}[y|x] = g(x^T\beta_0)$ by $\widehat{g}(x^T\beta_n,h) = \widehat{g}(x^T\beta_n)$. The smoothing parameter associated with the scalar index $x^T\beta_n$ can be selected by least squares cross-validation:

$$\hat{h} = \underset{h}{\operatorname{arg \, min}} \sum_{i=1}^{n} [Y_i - \hat{g}_{-i}(X_i^T \beta_n, h)]^2.$$

• Under some regularity conditions, the selection of h is of order $Op(n^{-\frac{1}{5}})$.

Powell, Stock and Stoker's (1989) Density-Weighted Average Derivative Estimator

• As we obtain the average derivative above, we also obtain the weighted average derivative of $\mathbb{E}(Y \mid X = x)$:

$$\mathbb{E}\left[w(x)\frac{\partial \mathbb{E}(Y\mid X=x)}{\partial x}\right] = \mathbb{E}\left[w(x)g^{(1)}(x^T\beta_0)\right]\beta_0.$$

- Let w(x) be the density function f(x), and δ denote the density-weighted average derivative of $\mathbb{E}(Y \mid X = x)$.
- Then we obtain

$$\delta = \mathbb{E}\left[f(X)\frac{\partial \mathbb{E}(Y \mid X = x)}{\partial x}\right]$$

$$= \mathbb{E}\left[f(X)g^{(1)}(X^T\beta_0)\right]$$

$$= \int g^{(1)}(x^T\beta_0)f^2(x)dx$$

$$= g(x^T\beta_0)f^2(x) - 2\int g(x^T\beta_0)f^{(1)}(x)f(x)dx.$$

• Assume that f(x)=0 at the boundary of the support of X. Then we observe that $g(x^T\beta_0)f^2(x)=0$, that is,

$$\delta = -2 \int g(x^T \beta_0) f^{(1)}(x) f(x) dx$$
$$= -2 \mathbb{E}[g(X^T \beta_0) f^{(1)}(X)]$$
$$= -2 \mathbb{E}[Y f^{(1)}(X)].$$

• We can estimate δ by its sample analogue:

$$\hat{\delta} = -\frac{2}{n} \sum_{i=1}^{n} Y_i \hat{f}_{-i}^{(1)}(X_i), \tag{2}$$

where $\widehat{f}_{-i}(X_i)$ is the leave-one-out NW estimator of f(X):

$$\widehat{f}_{-i}(X_i) = \frac{1}{n-1} \sum_{i \neq i} \left(\frac{1}{h}\right)^q K\left(\frac{X_i - X_j}{h}\right).$$

- There is no denominator messing with uniform convergence. There is only a density estimator, no conditional mean needed.
- The textbook uses the NW estimator $\widehat{f}^{(1)}(X_i)$ in (2), while Powell, Stock and Stoker (1989) define their estimator using the leave-one-out NW estimator $\widehat{f}^{(1)}_{-i}(X_i)$.
- Here we proceed with Powell, Stock and Stoker (1989).

• A useful representation of $\widehat{\delta}$ is given by

$$\widehat{\delta} = \frac{-2}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} \left(\frac{1}{h}\right)^{q+1} Y_i K^{(1)} \left(\frac{X_i - X_j}{h}\right).$$

• Under some assumptions, if $h \to 0$ and $nh^{q+2} \to \infty$ hold, then the density-weighted average derivative estimator $\widehat{\delta}$ satisfies that

$$\sqrt{n}(\widehat{\delta} - \mathbb{E}[\widehat{\delta}]) \xrightarrow{d} \mathsf{Normal}(0, \Sigma_{\delta}),$$

where
$$\Sigma_{\delta}=4\mathbb{E}[\sigma^2(X)f^{(1)}(X)f^{(1)}(X)^T]+4\mathrm{Var}(f(X)g^{(1)}(X)).$$

• Recall that $K(\cdot)$ is differentiable and symmetric, that is, $K^{(1)}(u) = -K^{(1)}(-u)$. Then, we obtain the standard U-statistics form of $\widehat{\delta}$:

$$\widehat{\delta} = -\binom{n}{2}^{-1} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left(\frac{1}{h}\right)^{q+1} K^{(1)} \left(\frac{X_i - X_j}{h}\right) (Y_i - Y_j).$$

• Letting Z_i denote $(Y_i, X_i^T)^T$ and $p_n(Z_i, Z_j)$ denote $-\frac{1}{h^{q+1}}K^{(1)}\left(\frac{X_i-X_j}{h}\right)(Y_i-Y_j)$, $\widehat{\delta}$ can be rewritten as

$$\hat{\delta} = \binom{n}{2}^{-1} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_n(Z_i, Z_j).$$

• This representation of $\widehat{\delta}$ permits a direct analysis of its asymptotic properties, based on the asymptotic theory of U-statistics. Further discussions can be seen in Serfling (1980); van der Vaart (1998, Chapter 12).

- The asymptotic bias is a bit complicated.
- Let q be the dimension of X, and set

$$p = \begin{cases} \frac{q+4}{2} & \text{if } q \text{ is even,} \\ \\ \frac{q+3}{2} & \text{if } q \text{ is odd.} \end{cases}$$

- The kernel function $K(\cdot)$ for the estimation of $f(\cdot)$ is required to be of order at least p.
- The asymptotic bias is $\sqrt{n}(\mathbb{E}(\widehat{\delta}) \delta) = O(n^{\frac{1}{2}}h^p)$, which is o(1) if $nh^{2p} \to 0$.

- $nh^{2p} \to 0$ is violated if h is selected to be optimal for the estimation of $f(\cdot)$ or $f^{(1)}(\cdot)$. That is, this requirement needs the bandwidth h to undersmooth to reduce the bias. Further discussions on the bandwidth selection follow in Section 8.4.
- Cattaneo, Crump and Jansson (2010, 2011) introduce another asymptotic theory to relax strong assumptions.
- Nishiyama and Robinson (2005): Density-weighted average derivative estimators can be refined by bootstrapping methods.

Li, Lu and Ullah's (2003) Estimator

- We consider the estimation of the average derivative $\mathbb{E}[g^{(1)}(X^T\beta_0)]$ again.
- ullet We can also use the local polynomial method for the estimation of $g^{(1)}(X^Teta_0)$.
- Let $\hat{g}^{(1)}(X_i^T\beta_0)$ denote the kernel estimator of $g^{(1)}(X_i\beta_0)$, which is obtained from an m-th order local polynomial regression.
- Li, Lu and Ullah (2003) suggest to use $\tilde{\beta}_{ave}=\frac{1}{n}\widehat{g}^{(1)}(X_i^T\beta_0)$ to estimate $\beta=\mathbb{E}[g^{(1)}(X^T\beta_0)].$

- Their approach does not require the condition f(x) = 0 at the boundary of the support of X. However, they require to assume that
 - the support of X is a compact set, and that
 - ullet the density f(x) is bounded below by a positive constant at the support of X, which avoids the use of a trimming function.

• Under the assumptions so far and some additional conditions, if we use a second order kernel, where $n\sum_{s=1}^q a_s^{2m} \to 0$ and $\frac{na_1\cdots a_q\sum_{s=1}^q}{\ln(n)} \to \infty$ with m denoting the order of local polynomial estimation, then,

$$\sqrt{n}(\tilde{\beta}_{ave} - \beta) \xrightarrow{d} \mathsf{Normal}\left(0, \Phi + \mathsf{var}(g^{(1)}(X^T\beta_0))\right),$$

$$\left[\sigma^2(X)f^{(1)}(X)f^{(1)}(X)^T\right]$$

where
$$\Phi=\mathbb{E}\left[\frac{\sigma^2(X)f^{(1)}(X)f^{(1)}(X)^T}{f^{(2)}(X)}\right].$$

- ullet The proof of the asymptotic normality can be derived from U-statistics theory.
- Newey (1994) shows that the asymptotic variance does not depend on the specific nonparametric estimation method.

Hristache, Juditsky and Spokoiny's (2001) Improved Average Derivative Estimator

- Powell, Stock and Stoker's (1989) density-weighted average derivative estimator requires the density of X to be increasingly smooth as the dimension of X increases.
- This is necessary to make $\sqrt{n}(\hat{\delta} \delta)$ asymptotically normal with a mean of 0.
- Practical Consequence: The finite-sample performance of the density-weighted average derivative estimator is likely to be deteriorated as the dimension of X increases, especially if the density of X is not very smooth.
- Specifically, the estimator's bias and MSE are likely to increase as the the dimension of X increases.

- Hristache, Juditsky and Spokoiny (2001) introduce an iterated average derivative estimator that overcomes this problem.
- Their estimator is based on the observation that $g(x^T\beta_0)$ does not vary when x varies in a direction that is orthogonal to β_0 .
- Therefore, only the directional derivative of $\mathbb{E}(Y \mid X = x)$ along the direction of β is needed for estimation.
- Suppose that this direction were known. Then estimating the directional
 derivative would be a one-dimensional nonparametric estimation problem, and
 there would be no curse of dimensionality.

- In practice, the direction of β is unknown.
- Hristache, Juditsky and Spokoiny (2001) show that this can be estimated with sufficient accuracy through an iterative procedure.
- Their idea is to use prior information about the vector β for improving the quality of the gradient estimate by extending a weighting kernel in the direction of small directional derivatives, and they demonstrate that the whole procedure requires at most $2\log(n)$ iterations.
- Under relatively mild assumptions, their estimator is \sqrt{n} -consistent.
- See Horowitz (2009, Section 2.6) for further discussions.

Estimation of $g(\cdot)$

- Let β_n denote a \sqrt{n} -consistent estimator of β , or δ .
- Once we obtain β_n , we can estimate $g(x^T\beta_0)$ by

$$\widehat{g}(x^T \beta_n) = \frac{\sum_{j=1}^n Y_j K\left(\frac{(X_j - x)^T \beta_n}{h}\right)}{\sum_{j=1}^n K\left(\frac{(X_j - x)^T \beta_n}{h}\right)}.$$

- Recall that β_n is a \sqrt{n} -consistent estimator of β , that is, $\beta_n \beta_0 = Op(n^{-\frac{1}{2}})$,
- This converges to zero faster than standard nonparametric estimators.
- Then, the asymptotic distribution of $\widehat{g}(x^T\beta_n)$ is the same as that of $\widehat{g}(x^T\beta_0)$.

Corollary 8.1

$$\sqrt{nh}[\widehat{g}(x^T\beta_n) - g(x^T\beta_0) - h^2B(x_0^\beta)] \xrightarrow{d} \mathsf{Normal}\left(0, \frac{\kappa\sigma^2(x^T\beta_0)}{f(x^T\beta_0)}\right).$$

Generalized Cases?

- The direct average derivative estimation method discussed previously is applicable only when x is a $q \times 1$ vector of continuous variables because the derivative w.r.t. discrete variables is not defined.
- Horowitz and Hardle (1996) discuss how direct (noniterative) estimation can be generalized to cases for which some components of x are discrete. Horowitz (2009) provides an excellent overview of this method.

Finite-Sample Problem

- Nonparametric estimation in the 1st stage may suffer from the curse of dimensionality.
- In small-sample settings, the iterative method of Ichimura (1993) may be more appealing as it avoids having to conduct high-dimensional nonparametric estimation.

Carroll, Fan, Gijbels and Wand (1997)

 They consider the problem of estimating a general partially linear single index model which contains both a partially linear model and a single index model as special cases.