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Introduction

• A semiparametric single index model is given by

Y = g(XTβ0) + u,

where

Y ∈ R : a dependent variable,

X ∈ Rq : a q × 1 explanatory vector,

β0 ∈ Rq : a q × 1 vector of unknown parameters,

u ∈ R : an error term which satisfies E(u | X) = 0,

g(·) : an unknown distribution function.
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• Even though x is a q × 1 vector, xTβ0 is a scalar of a single linear combination,

which is called a single index.

• By the form of the single index model, we obtain

E(Y | X) = g(XTβ0),

which means that the conditional expectation of Y only depends on the vector X

through a single index XTβ0.

• The model is semiparametric when β ∈ Rq is estimated with the parametric
methods and g(·) with the nonparametric methods.

• If g(·) is the identity function, then the model turns out to be a linear regression

model.

• If g(·) is the CDF of Normal(0, 1), then the model turns out to be a probit model.

• If g(·) is the CDF of logistic distribution, then the model turns out to be a logistic

regression model.
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Textbooks

• Pagan and Ullah (1999, Chapter 7)

• Li and Racine (2007, Chapter 8)

• Horowitz (2009, Chapters 2 and 4)

• 西山・人見（2023，第 3章）
• 末石（2024，第 4章）
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Identification



Identification Conditions

Proposition 8.1 (Identification of a Single Index Model)

For the semiparametric single index model Y = g(xTβ0)+ u, identification of β0

and g(·) requires that
(i) x should not contain a constant/an intercept, and must contain at least

one continuous variable. Moreover, ∥β0∥=1.

(ii) g(·) is differentiable and is not a constant function on the support of xTβ0.

(iii) For the discrete components of x, varying the values of the discrete

variables will not divide the support of xTβ0 into disjoint subsets.
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Identification Condition (i)

• Note that the location and the scale of β0 are not identified.

• The vector x cannot include an intercept because the function g(·) (which is to be
estimated in nonparametric manners) includes any location and level shift.

• That is, β0 cannot contain a location parameter.

• Some normalization criterion (scale restrictions) for β0 are needed.

• One approach is to set ∥β0∥ = 1.

• The second approach is to set one component of β0 to equal one. This approach

requires that the variable corresponding to the component set to equal one to be

continuously distributed and has a non-zero coefficient.

• Then, x must be dimension 2 or larger. If x is one-dimensional, then β0 ∈ R1 is

simply normalized to 1, and the model is the one-dimensional nonparametric

regression E(Y | x) = g(x) with no semiparametric component.
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Identification Conditions (ii) and (iii)

• The function g(·) cannot be a constant function and must be differentiable on the

support of xTβ0.

• x must contain at least one continuously distributed variable and this continuous
variable must have non-zero coefficient.

• If not, xTβ0 only takes a discrete set of values and it would be impossible to identify

a continuous function g(·) on this discrete support.
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Ichimura’s (1993) Method



Ichimura’s (1993) Method

• Suppose that the functional form of g(·) were known.

• Then we could estimate β0 by minimizing the least-squares criterion:∑
i=1

[
Yi − g(XT

i β)
]2

with respect to β.

• We could think about replacing g(·) with a nonparametric estimator ĝ(·).
• However, since g(z) is the conditional mean of Yi given XT

i β0 = z, g(·) depends
on unknown β0. thus we cannot estimate g(·) here.
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• Nevertheless, for a fixed value of β, we can estimate

G(XT
i β) := E(Yi | XT

i β) = E(g(XT
i β0) | XT

i β).

• In general G(XT
i β) ̸= g(XT

i β).

• When β = β0, it holds that G(XT
i β0) = g(XT

i β0).

• That is, conditioning on a general XT
i β, G and g do not, in general, coincide,

while they coincide when XT
i β = XT

i β0.
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Ichimura’s (1993) Weighted Semiparametric Least Squares Estimation

• First, we estimate G(XT
i β) with the leave-one-out NW estimator:

Ĝ−i(X
T
i β) ≡ Ê−i(Yi | XT

i β) =

∑
j ̸=i YjK

(
XT

j β−XT
i β

h

)
∑

j ̸=iK

(
XT

j β−XT
i β

h

) .

• Second, using the leave-one-out NW estimator Ĝ−i(X
T
i β), we estimate β with

β̂ ≡ argmin
β

n∑
i=1

[
Yi − Ĝ−i(X

T
i β)

]2
w(Xi)1(Xi ∈ An) ≡ argmin

β
Sn(β), (1)

which is called Ichimura’s estimator (the WSLS estimator).
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• w(Xi) is a nonnegative weight function.

• Aδ = {x : p(xTβ) ≥ δ, for ∀β ∈ B}.
• An = {x : ||x− x⋆|| ≤ 2h, for ∃x⋆ ∈ Aδ}, which shrinks to Aδ as n → ∞ and

h → 0.

• 1(Xi ∈ An) is a trimming function to trim out small values of

p̂(XT
i β) =

1

nh

∑
j ̸=iK

(
XT

j β−XT
i β

h

)
, so that we do not suffer from the random

denominator problem.
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Asymptotic Distribution of Ichimura’s (1993) Estimator

• Let β̂ denote the semiparametric estimator of β0 obtained from minimizing Sn(β).

• To derive the asymptotic distribution of β̂, we introduce the following conditions:

Assumption 8.1

The set Aδ is compact, and the weight function w(·) is bounded and posotive on

Aδ. Define the set

Dz = {z : z = xTβ, β ∈ B, x ∈ Aδ}.

Letting p(·) denote the PDF of z ∈ Dz, p(·) is bounded below by a positive

constant for ∀z ∈ Dz
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Assumption 8.2

g(·) and p(·) are 3 times differentiable w.r.t. z = xβ . The third derivatives are

Lipschitz continuous uniformly over B for ∀z ∈ Dz.

Assumption 8.3

The kernel function is a bounded second order kernel, which has bounded support;

is twice differentiable; and its second derivative is Lipschitz continuous.

Assumption 8.4

E(|Y m|) < ∞ for ∃m ≥ 3. var(Y | x) is bounded and bounded away from zero

for ∀x ∈ Aδ.
q ln(h)

nh
3+ 3

m−1
→ 0 and nh8 → 0 as n → ∞.
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Theorem 8.1 (Asymptotic Distribution of Ichimura’s (1993) Estimator)

Under assumptions 8.1 through 8.4,

√
n(β̂ − β0)

d−→ Normal(0,ΩI),

with

ΩI = V −1ΣV −1,

V = E{w(Xi)(g
(1)
i )2 × (Xi − EA(Xi | XT

i β0))(Xi − EA(Xi | XT
i β0))

T },

Σ = E{w(Xi)σ
2(Xi)(g

(1)
i )2 × (Xi − EA(Xi | XT

i β0))(Xi − EA(Xi | XT
i β0))

T },

(g
(1)
i ) =

∂g(v)

∂v
|v=XT

i β0
,

EA(Xi | v) = E(Xi | xTAβ0 = v),

xA has the distribution of Xi conditional on Xi ∈ Aδ.
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Proof (Theorem 8.1)

• See Ichimura (1993); and Hardle, Hall and Ichimura (1993) for the proof of

Theorem 8.1.

• Horowitz (2009) provides an excellent heuristic outline for the proof, using only

familiar Taylor series methods, the standard LLN, and the Lindeberg-Levy CLT.
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Optimal Weight under Homoscedasticity

• We introduce the following homoscedasticity assumption:

E(u2i | Xi) = σ2.

• Under this assumption, the optimal choice of w(·) is w(Xi) = 1.

• In this case,

β̂ = argminβ

n∑
i=1

(Yi − Ĝ−i(X
T
i β)

2)1(Xi ∈ An)

is semiparametrically efficient in the sense that ΩI is the semiparametric variance

lower bound (conditional on X ∈ Aδ).
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Optimal Weight under Heteroscedasticity

• In general, E(u2i | Xi) = σ2(Xi).

• An infeasible case: If one assues that E(u2i | Xi) = σ2(XT
i β0), that is, the

conditional variance depends only on the single index XT
i β0, the choice of

w(Xi) =
1

σ2(XT
i β0)

can lead to a semiparametrically efficient estimation.

• We could employ a two-step procedure as follows.

• Suppose that the conditional variance is a function of XT
i β0 (Let σ2(XT

i β0)

denote it).
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• 1st step: Use w(Xi) = 1 to obtain a
√
n-consistent estimator of β0.

• Let β̃0 denote the estimator of β0, and ũi = Yi − ĝ(XT
i β̃0) denote the residual

obtained from β̃0.

• We can obtain a consistent nonparametric estimator of the conditional variance:

σ̂2(XT
i β̃0).

• 2nd step: Estimate β0 again using w(Xi) =
1

σ̂2(XT
i β̃0)

:

β̂0 = argminβ

n∑
i=1

[
Yi − Ĝ−i(X

T
i β)

]2 1

σ̂2(XT
i β̃0)

1(Xi ∈ An).

• The estimator β̂0 is semiparametrically efficient because σ̂2(v)− σ2(v) converges

to zero at a particular rate uniformly over v ∈ Dv (Dv is the support of XT
i β0).

1

1σ̂2(XT
i β) can be used instead.
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Bandwidth Selection for Ichimura’s (1993) Estimator

• Recall that we assume in Assumption 8.4 that
q ln(h)

nh3+
3

m−1

→ 0 and nh8 → 0 as

n → ∞, where m ≥ 3 is a positive integer whose specific value depends on the

existence of the number of finite moments of Y along with the smoothness of the

unknown function g(·). 2

• The range of permissive smoothing parameters allows for optimal smoothing, i.e.,

h = O(n− 1
5 ), which satisfies Assumption 8.4.

2Assumption 8.4 is a sufficient condition ensuring that nonparametric estimation of g does not affect

the convergence rate of the parametric part.
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• Our aim is to choose β̂ close to β0, and h close to the value h0, which minimize

the average of

E{ĝ(XT
i β0 | XT

i β0)− g(XT
i β0)}2.

• Hardle, Hall and Ichimura (1993) suggest picking β and the bandwidth h jointly

by minimization of Sn(β).
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• In the proof of Theorem 8.1, we can establish the following decomposition of the

least squares criterion:

Sn(β, h) =
1

n

n∑
i=1

(YiĜ−i(X
T
i β))

2

=
1

n

n∑
i=1

(Yi −G(XT
i β))

2 +
1

n

n∑
i=1

(G−i(X
T
i β0)− g(Xiβ0))

2 + op(1)

≡ S(β) + T (h) + op(1).

• Minimize Sn(β, h) simultaneously over both (β, h) ∈ Bn ×Hn is equivalent to
• first minimizing S(β) over β ∈ Bn; and

• second minimizing T (h) over h ∈ Hn.

• Let (β̂, ĥ) be the minimizers of Sn(β, h).

• Suppose that we use the second order kernel. Hardle, Hall and Ichimura (1993)

show that the MSE optimal bandwidth satisfies

ĥ = O(n− 1
5 ),

ĥ

h0

p−→ 1. 22
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Regularity Conditions in Ichimura (1993)

For identification:

• A second order kernel

• h satisfies Assumption 8.4.

• E[|Y m|] < ∞ for ∃m ≥ 3.

Regularity Conditions in HHI (1993)

For asymptotic properties:

• A higher order kernel (at least 4)

• h = O(n− 1
5 )

• Y has moments of any order.
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Direct Semiparametric Estimators for β

• Here we review:

• Hardle and Stoker’s (1989) Average Derivative Estimator,

• Powell, Stock and Stoker’s (1989) Density-Weighted Average Derivative Estimator,

• Li, Lu and Ullah’s (2003) Estimator, and

• Hristache, Juditsky and Spokoiny’s (2001) Improved Average Derivative Estimator.

• The advantage of the direct estimation method is that we can estimate β0 and

g(xTβ0) directly without running the nonlinear least squares, which leads to the

computational simplicity.

• We still suffer from a finite-sample problem.
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Hardle and Stoker’s (1989) Average Derivative Estimator

• Suppose that x is a q × 1 vector of continuous variables.

• Then we obtain the average derivative of E(Y | X = x):

E
[
∂E(Y | X = x)

∂x

]
= E

[
g(1)(xTβ0)

]
β0

• Recall that the scale of β0 is not identified, which means that the constant

E
[
g(1)(xTβ0)

]
does not matter. That is, a normalized estimation of

E
[
∂E(Y |X=x)

∂x

]
is an estimation of normalized β0.
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• Let Ê(Yi | Xi) denote the NW estimator of E(Yi | Xi):

Ê(Yi | Xi) =

∑n
j=1 YjK

(
Xi−Xj

a

)
∑n

j=1K
(
Xi−Xj

a

) .

• Assuming that the kernel function is differentiable, we can estimate β0, estimating

E
[
∂E(Y |X=x)

∂x

]
with its sample analogue:

β̃ave =
1

n

n∑
i=1

∂Ê(Yi | Xi)

∂Xi
.

• The scale normalization can also be implemented by
β̃ave

|β̃ave|
.
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• An issue raised with this estimator is the random denominator problem, which

leads to a difficulty in the derivation of the asymptotic properties.

• Rilstone (1991) establishes the
√
n-normality using a trimming function.
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Bandwidth Selection

for Hardle and Stoker’s (1989) Average Derivative Estimator

• The estimation of β0 involves the q-dimensional multivariate nonparametric

estimation of the first order derivatives.

• Smoothing Parameters for f̂
(1)
−i (Xi): Hardle and Tsybakov (1993) suggest to

choose the smoothing parameters h1, · · · , hq to minimize MSE of δ̂.

• They show that the asymptotically optimal bandwidth is given by

hs = csn
− 2

2q+v+2 , for all s = 1, . . . , q, where cs is the constant, and v is the order

of kernel.

• Powell and Stoker (1996) provide a method for estimating cs.

• Horowitz (2009) suggests to select hs based on bootstrap resampling.
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• Smoothing Parameters for ĝ(Xi
Tβn): Once we select the optimal hs’s, we can

obtain an estimator of β. Let βn denote a generic estimator.

• We estimate E[y|x] = g(xTβ0) by ĝ(xTβn, h) = ĝ(xTβn). The smoothing

parameter associated with the scalar index xTβn can be selected by least squares

cross-validation:

ĥ = argmin
h

n∑
i=1

[Yi − ĝ−i(X
T
i βn, h)]

2.

• Under some regularity conditions, the selection of h is of order Op(n− 1
5 ).
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Powell, Stock and Stoker’s (1989)

Density-Weighted Average Derivative Estimator

• As we obtain the average derivative above, we also obtain the weighted average

derivative of E(Y | X = x):

E
[
w(x)

∂E(Y | X = x)

∂x

]
= E

[
w(x)g(1)(xTβ0)

]
β0.
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• Let w(x) be the density function f(x), and δ denote the density-weighted average

derivative of E(Y | X = x).

• Then we obtain

δ = E
[
f(X)

∂E(Y | X = x)

∂x

]
= E

[
f(X)g(1)(XTβ0)

]
=

∫
g(1)(xTβ0)f

2(x)dx

= g(xTβ0)f
2(x)− 2

∫
g(xTβ0)f

(1)(x)f(x)dx.
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• Assume that f(x) = 0 at the boundary of the support of X. Then we observe

that g(xTβ0)f
2(x) = 0, that is,

δ = −2

∫
g(xTβ0)f

(1)(x)f(x)dx

= −2E[g(XTβ0)f
(1)(X)]

= −2E[Y f (1)(X)].

• We can estimate δ by its sample analogue:

δ̂ = − 2

n

n∑
i=1

Yif̂
(1)
−i (Xi), (2)

where f̂−i(Xi) is the leave-one-out NW estimator of f(X):

f̂−i(Xi) =
1

n− 1

∑
j ̸=i

(
1

h

)q

K

(
Xi −Xj

h

)
.
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• There is no denominator messing with uniform convergence. There is only a

density estimator, no conditional mean needed.

• The textbook uses the NW estimator f̂ (1)(Xi) in (2), while Powell, Stock and

Stoker (1989) define their estimator using the leave-one-out NW estimator

f̂
(1)
−i (Xi).

• Here we proceed with Powell, Stock and Stoker (1989).
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• A useful representation of δ̂ is given by

δ̂ =
−2

n(n− 1)

n∑
i=1

∑
j ̸=i

(
1

h

)q+1

YiK
(1)

(
Xi −Xj

h

)
.

• Under some assumptions, if h → 0 and nhq+2 → ∞ hold, then the

density-weighted average derivative estimator δ̂ satisfies that

√
n(δ̂ − E[δ̂]) d−→ Normal(0,Σδ),

where Σδ = 4E[σ2(X)f (1)(X)f (1)(X)T ] + 4Var(f(X)g(1)(X)).
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• Recall that K(·) is differentiable and symmetric, that is, K(1)(u) = −K(1)(−u).

Then, we obtain the standard U -statistics form of δ̂:

δ̂ = −

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

(
1

h

)q+1

K(1)

(
Xi −Xj

h

)
(Yi − Yj).

• Letting Zi denote (Yi, X
T
i )

T and pn(Zi, Zj) denote

− 1
hq+1K

(1)
(
Xi−Xj

h

)
(Yi − Yj), δ̂ can be rewritten as

δ̂ =

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

pn(Zi, Zj).

• This representation of δ̂ permits a direct analysis of its asymptotic properties,

based on the asymptotic theory of U -statistics. Further discussions can be seen in

Serfling (1980); van der Vaart (1998, Chapter 12).

35

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316481
https://www.cambridge.org/core/books/asymptotic-statistics/A3C7DAD3F7E66A1FA60E9C8FE132EE1D


• The asymptotic bias is a bit complicated.

• Let q be the dimension of X, and set

p =


q + 4

2
if q is even,

q + 3

2
if q is odd.

• The kernel function K(·) for the estimation of f(·) is required to be of order at

least p.

• The asymptotic bias is
√
n(E(δ̂)− δ) = O(n

1
2hp), which is o(1) if nh2p → 0.
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• nh2p → 0 is violated if h is selected to be optimal for the estimation of f(·) or
f (1)(·). That is, this requirement needs the bandwidth h to undersmooth to

reduce the bias. Further discussions on the bandwidth selection follow in Section

8.4.

• Cattaneo, Crump and Jansson (2010, 2011) introduce another asymptotic theory

to relax strong assumptions .

• Nishiyama and Robinson (2005): Density-weighted average derivative estimators

can be refined by bootstrapping methods.
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Li, Lu and Ullah’s (2003) Estimator

• We consider the estimation of the average derivative E[g(1)(XTβ0)] again.

• We can also use the local polynomial method for the estimation of g(1)(XTβ0).

• Let ĝ(1)(XT
i β0) denote the kernel estimator of g(1)(Xiβ0), which is obtained from

an m-th order local polynomial regression.

• Li, Lu and Ullah (2003) suggest to use β̃ave =
1

n
ĝ(1)(XT

i β0) to estimate

β = E[g(1)(XTβ0)].

38

https://www.tandfonline.com/doi/full/10.1080/10485250310001605450
https://www.tandfonline.com/doi/full/10.1080/10485250310001605450


• Their approach does not require the condition f(x) = 0 at the boundary of the
support of X. However, they require to assume that

• the support of X is a compact set, and that

• the density f(x) is bounded below by a positive constant at the support of X,

which avoids the use of a trimming function.
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• Under the assumptions so far and some additional conditions, if we use a second

order kernel, where n

q∑
s=1

a2ms → 0 and
na1 · · · aq

∑q
s=1

ln(n)
→ ∞ with m denoting

the order of local polynomial estimation, then,

√
n(β̃ave − β)

d−→ Normal
(
0,Φ+ var(g(1)(XTβ0))

)
,

where Φ = E

[
σ2(X)f (1)(X)f (1)(X)T

f (2)(X)

]
.

• The proof of the asymptotic normality can be derived from U -statistics theory.

• Newey (1994) shows that the asymptotic variance does not depend on the specific

nonparametric estimation method.
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Hristache, Juditsky and Spokoiny’s (2001)

Improved Average Derivative Estimator

• Powell, Stock and Stoker’s (1989) density-weighted average derivative estimator

requires the density of X to be increasingly smooth as the dimension of X

increases.

• This is necessary to make
√
n(δ̂ − δ) asymptotically normal with a mean of 0.

• Practical Consequence: The finite-sample performance of the density-weighted

average derivative estimator is likely to be deteriorated as the dimension of X

increases, especially if the density of X is not very smooth.

• Specifically, the estimator’s bias and MSE are likely to increase as the the

dimension of X increases.
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• Hristache, Juditsky and Spokoiny (2001) introduce an iterated average derivative

estimator that overcomes this problem.

• Their estimator is based on the observation that g(xTβ0) does not vary when x

varies in a direction that is orthogonal to β0.

• Therefore, only the directional derivative of E(Y | X = x) along the direction of β

is needed for estimation.

• Suppose that this direction were known. Then estimating the directional

derivative would be a one-dimensional nonparametric estimation problem, and

there would be no curse of dimensionality.
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• In practice, the direction of β is unknown.

• Hristache, Juditsky and Spokoiny (2001) show that this can be estimated with

sufficient accuracy through an iterative procedure.

• Their idea is to use prior information about the vector β for improving the quality

of the gradient estimate by extending a weighting kernel in the direction of small

directional derivatives, and they demonstrate that the whole procedure requires at

most 2 log(n) iterations.

• Under relatively mild assumptions, their estimator is
√
n-consistent.

• See Horowitz (2009, Section 2.6) for further discussions.
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Estimation of g(·)

• Let βn denote a
√
n-consistent estimator of β, or δ.

• Once we obtain βn, we can estimate g(xTβ0) by

ĝ(xTβn) =

∑n
j=1 YjK

(
(Xj−x)T βn

h

)
∑n

j=1K
(
(Xj−x)T βn

h

) .

• Recall that βn is a
√
n-consistent estimator of β, that is, βn − β0 = Op(n− 1

2 ),

• This converges to zero faster than standard nonparametric estimators.

• Then, the asymptotic distribution of ĝ(xTβn) is the same as that of ĝ(xTβ0).

Corollary 8.1

√
nh[ĝ(xTβn)− g(xTβ0)− h2B(xβ0 )]

d−→ Normal

(
0,

κσ2(xTβ0)

f(xTβ0)

)
.
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Generalized Cases?

• The direct average derivative estimation method discussed previously is applicable

only when x is a q × 1 vector of continuous variables because the derivative w.r.t.

discrete variables is not defined.

• Horowitz and Hardle (1996) discuss how direct (noniterative) estimation can be

generalized to cases for which some components of x are discrete. Horowitz

(2009) provides an excellent overview of this method.
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Finite-Sample Problem

• Nonparametric estimation in the 1st stage may suffer from the curse of

dimensionality.

• In small-sample settings, the iterative method of Ichimura (1993) may be more

appealing as it avoids having to conduct high-dimensional nonparametric

estimation.
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Carroll, Fan, Gijbels and Wand (1997)

• They consider the problem of estimating a general partially linear single index

model which contains both a partially linear model and a single index model as

special cases.
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