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Review on Sections 26.1-26.6



Multinomial Response

• Suppose that we have a multinomial random variable Y ∈ {1, 2, · · · , J}, and
k-dimensional regressors X ∈ Rk.

• The conditional distributions of Y given X is summarized by the response

probability

Pj(x) = P (Y = j|X = x) .

• The response probabilities P1(x), · · · , PJ(x) are nonparametrically identified and

can be arbitrary functions of x.
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Latent Utility

• Multinomial response is typically motivated and derived from a latent utility

model. Assume that the utility of choosing alternative j is expressed as

U∗
j = X⊤βj + ϵj (1)

where βj are coefficients and ϵj is an idiosyncratic error of individual- and

product-level.

• An individual is assumed to select the alternative with the highest utility:

Y = j ⇐⇒ U∗
j ≥ U∗

l for all l.

• To identify βj in (1), researchers are required to impose a normalization. The

standard choice is to set βj = 0 for a base alternative j and interpret the reported

coeeficients β̂j as differences relative to the base alternative.
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Simple Multinomial Logit

• Assume that the utility of alternative j is given by (1), and the error vector

(ϵ1, · · · , ϵJ) has the generalized extreme value (GEV) joint distribution:

F (ϵ1, · · · , ϵJ) = exp

−

 J∑
j=1

exp
(
−ϵj

τ

)τ .

• Then, the response probabilities equal

Pj(X) =
exp

(
X⊤βj

τ

)
∑J

l=1 exp
(
X⊤βl

τ

) . (2)
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• The canonical multinomial logit model is an extension of the binary logit model to

the case with an unordered multinomial dependent variable and heterogenous

coefficients βj ’s.

• The explanatory vector X is common across the choices in the multinomial logit

model.

• Note that the scale of the coefficients τ is not identified.
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Maximum Likelihood Estimation

• Noting that the response probabilities in (2) are functions of the parameter vector

β = (β1, · · · , βJ). we can express the probability mass function for Y as

π(Y |X,β) =

J∏
j=1

Pj(X|β)1{Y=j}.

• Thus, the log-likelihood function is given by

ln(β) =

n∑
i=1

J∑
j=1

1{Yi = j} logPj(Xi|β).

• Then, the maximum likelihood estimator (MLE) is β̂ = argmax
β

ln(β), which has

no algebraic solution and so needs to be found numerically.
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Marginal Effect

• The coefficients themselves are difficult to interpret.

• In applications, it is common to examine and report marginal effects:

δj(x) =
∂

∂x
Pj(x) = Pj(x)

(
βj −

J∑
l=1

βlPl(x)

)
,

which can be estimated by

δ̂j(x) = P̂j(x)

(
β̂j −

J∑
l=1

β̂lP̂l(x)

)
.

• The average marginal effect AMEj = E [δj(X)] can be estimated by

ÂMEj =
1
n

∑n
i=1 δ̂j(Xi).
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Conditional Logit

• Assume that the utility of alternative j is given by

U∗
j = X⊤

j γ + ϵj ,

and the error vector (ϵ1, · · · , ϵJ) are distributed IID Type 1 extreme value:

F (ϵj) = exp (− exp(−ϵj)) , j = 1, · · · , J.

• Then, the response probabilities equal

Pj(w, x) =
exp

(
x⊤j γ

)
∑J

l=1 exp
(
x⊤l γ

) . (3)
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• The conditional logit model is an extension of the binary logit model to the case

with heterogenous explanatory vectors Xj ’s across choices.

• The coefficient γ does not depend on the chioces in the conditional logit mnodel.

• Let θ = (β1, · · · , βJ , γ). Given the observations {Yi, Xi} where

Xi = (X1i, · · · , XJi), the log-likelihood function is

ln(θ) =

n∑
i=1

J∑
j=1

1{Yi = j} logPj(Xi|θ).

The MLE is given by θ̂ = argmax
θ

ln(θ), which has no algebraic solution and

needs to be found numerically.

• Marginal effects are defined as

for j, δjj(x) =
∂

∂xj
Pj(x) = γPj(w, x) (1− Pj(x)) , and

for j ̸= l, δjl(x) =
∂

∂xl
Pj(x) = −γPj(w, x)Pl(x).
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Slight Extensions of Conditional Logit

• Under the following assumptions on utilituy:

U∗
j = W⊤βj +X⊤

j γ + ϵj , or

U∗
j = Wβj +Xjγ1 +XjWγ2 + ϵj (for notational simplicity, W ∈ R, Xj ∈ R)

similar results to the one above can be easily obtained.
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Independence of Irrelevant Alternatives (IIA)

• In the canonical multinomial logit model, the response probabilities are given by

(2), which leads to the following unrealistic restriction:

Pj(X|θ)
Pl(X|θ)

=
exp(X⊤βj)

exp(X⊤βl)
. (4)

• This restriction (4) is called independence of irrelevant alternatives (IIA), meaning

that the choice between j and l is independent of the other alternatives and hence

the latter are irrelevant to the bivariate choice between j and l.

• Where does this IIA problem arise? The IIA structure (coming from multinomial

logit model) excludes differentiated substitutability among alternatives.

• In other words, (part of) the problem is due to the restrictive correlation pattern

imposed on the errors by the GEV distribution.
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Nested Logit

• A more flexible correlation structure can mitigate the IIA problem, which allows

subsets of alternatives to have differential correlations.

• One solution is the nested logit model, which separates the alternatives into

groups (nests). Alternatives within groups are allowed to be correlated, but are

assumed uncorrelated across groups.

• Suppose that there exist J groups each with Kj alternatives. Assume that the

utility of the jk-th alternative is given by

U∗
jk = W⊤βjk +X⊤

jkγ + ϵjk, F (ϵ11, · · · , ϵJKJ
) = exp

−
J∑

j=1

 Kj∑
k=1

exp

(
−
ϵjk
τj

)τj
where W and Xjk denote individual-specific regressors and regressors varying by

alternative, respectively.
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• Under the above structure, the nested logit response probabilities are given by

Pjk = Pk|jPj ,

where

Pk|j =

exp

(
W⊤βjk+X⊤

jkγ

τj

)
∑Kj

m=1 exp

(
W⊤βjk+X⊤

jkγ

τj

) , Pj =

(∑Kj

m=1 exp

(
W⊤βjm+X⊤

jmγ

τj

))τj

∑J
l=1

(∑Kl
m=1 exp

(
W⊤βlm+X⊤

lmγ

τl

))τl .
• Letting θ be the parameters, the log-likelihood function is given by

ln(θ) =

n∑
i=1

J∑
j=1

Kj∑
k=1

1{Yi = jk}
(
logPk|j(Wi, Xi|θ) + logPj(Wi, Xi|θ)

)
.

• Marginal effects can (in principle) be caluculated but are complicated functions of

the coefficients.
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Mixed Logit



Mixed Logit (Random Coefficient Logit)

• Another solution to the IIA issue is the mixed logit (random coefficient logit)

model.

• Suppose that there exist J alternatives. Assume that the utility of the j-th

alternative is given by

U∗
j = W⊤βj +X⊤

j η + ϵj , (5)

where η is an individual-specific random variable with distribution F (η|α) with
parameters α, and ϵj is an error with IID extreme value.

• Typical choices for F (η|α)
• η ∼ Normal(γ,D) with diagonal covariance matrix D

• η ∼ Normal(γ,Σ) with unconstrained covariance matrix Σ

• Log-normally distributed η (to enforce η ≥ 0)

• For computational simplicity, it is common to partition Xj so that some variables

have random coefficients and others have fixed coefficients.
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How mixed logit mitigate IIA?

• Letting γ = E[η] and Vj = X⊤
j (η − γ) + ϵj , the model in (5) can be rewritten as

U∗
j = W⊤βj +X⊤

j γ + Vj ,

which is the conventional random utility framework with errors Vj .

• Notice that the errors Vj are conditionally heteroscedastic and correlated across

alternatives:

E[VjVl|XjXl] = X⊤
j var(η)Xl.

Here, the non-zero correlation means that the IIA property is partially broken,

providing the mixed logit model with more flexibility than the conditional logit

model.
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Response Probability & Log-Likelihood

• The conditional response probabilities given η is

Pj(w, x|η) =
exp

(
w⊤βj + x⊤j η

)
∑J

l=1 exp
(
w⊤βl + x⊤l η

) ,
following from (3).

• The unconditional response probabilities are given by

Pj(w, x) =

∫
Pj(w, x|η)dF (η|α). (6)

• Letting θ be the list of all parameters, the log-likelihood function is given by

ln(θ) =

n∑
i=1

J∑
j=1

1{Yi = j} logPj(Wi, Xi|θ).
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Monte Carlo Integration

• The integral in (6) is not available in closed form.

• A standard implementation is Monte Carlo integration (estimation by simulation).

• Let {η1, · · · , ηG} be a set of IID pseudo-random draws from F (η|α).
• The simulation estimator of (6) is

P̃j(w, x) =
1

G

G∑
g=1

Pj(w, x|ηg),

which converges in probability to Pj(w, x) in (6) as G increases.
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Simple Multinomial Probit



Simple Multinomial Probit

• The simple multinomial probit model assumes that the utility from alternative j is

given by

U∗
j = W⊤βj + ϵj , ϵj ∼ IID, Normal(0, 1), (7)

which is identical to the simple logit model, except for the error structure.

• As it assumes that the errors are independent, the simple multinomial probit

model does not allow two alternatives to be close substitutes, which is not, but

similar to, the IIA.
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Conditional Multinomial Probit

• The conditional multinomial probit model assumes that the utility from alternative

j is given by

U∗
j = W⊤βj +X⊤

j γ + ϵj , ϵj ∼ IID, Normal(0, 1), (8)

which is identical to the conditional logit model, except for the error structure.

• Note that the simple multinomial probit structure (7) is a special case of the

conditional multinomial models.
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Response Probabilitiy

• Under the structure (8), the response probabilities are given by the following

one-dimensional normal integral over the J − 1 fold product of normal distribution

functions:

Pj(W,X) =

∫ ∞

−∞

∏
l ̸=j

Φ
(
W⊤(βj − βl) + (Xj −Xl)

⊤γ + ν
)
ϕ(ν)dν, (9)

where Φ(·) and ϕ(·) are the CDF and PDf of Normal(0, 1), respectively.

• The response probabilities (9) are not available in closed form.

• Letting θ denote the parameters, The log-likelihood function is given by

ln(θ) =

n∑
i=1

J∑
j=1

1{Yi = j} logPj(Wi, Xi|θ).
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General Multinomial Probit



General Multinomial Probit

• The general multinomial probit model assumes that the utility from alternative j

is given by

U∗
j = W⊤βj +X⊤

j γ + ϵj , ϵ ∼ Normal(0,Σ),

where Σ is an unconstrained variance-covariance matrix.

• Identification:

• The coefficients βj and γ are only identified up to scale.

• The coefficients βj are only identified relative to a baseline alternative J .

• Σ requires some normalization.1

• The response probabilities is typically estimated by simulated maximum likelihood

(SML), which is developed by Geweke, Hajivassiliou and Keane (1997, GHK).
1Note that the scale of differenced utility U∗

j − U∗
J cannot be identified.
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Ordered Response



Ordered Response

• Let Y = {1, · · · , J} be an ordered discrete variable and X be a vector of

regressors. Here we assume that X does not include the intercept.

• The standard approach to ordered response assumes the latent utility framework:

U∗ = X⊤β + ϵ, ϵ ∼ G.

Under the above structure, the ordered response model specifies that the response

Y is determined by the following set of threshold crossing rules:

Y = 1 if U∗ ≤ α1,

Y = 2 if α1 < U∗ ≤ α2,

...

Y = J if αJ−1 < U∗.

where α1 < · · · < αJ−1 are unknown, non-stochastic, parameters.
24



Response Probability & Log-Likelihood

• The distribution G(·) of the error ϵ is typically assumed known. Common choices

include ϵ ∼ Normal(0, 1) (ordered probit) and ϵ ∼ Λ(z) = exp(z)/[1 + exp(z)]

(ordered logit).

• The response probabilities are given by

Pj(x) = P[Y = j|X = x] = · · · = G(αj − x⊤β)−G(αj−1 − x⊤β),

and the marginal effects by

∂

∂x
Pj(x) = β

(
g(αj−1 − x⊤β)− g(αj − x⊤β)

)
.

• Letting θ = (β, α1, · · · , αJ−1), the log-likelihood function is given by

ln(θ) =

n∑
i=1

J∑
j=1

1{Yi = j} logPj(Xi|θ).
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• It may be easier to interpret the cumulative response probabilities:

P[Y ≤ j|X = x] = G(αj − x⊤β).

The marginal cumulative effects are

∂

∂x
P[Y ≤ j|X = x] = −βg(αj − x⊤β).
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Count Data



Count Data

• While the multinomial model and the ordered choice model assume that the

maximum realization of the discrete dependent variable is known a priori, the

econometrician may not have such a priori knowledge.

• Let Y ∈ {0, 1, 2, · · · } be a discrete dependent variable with unbounded support.

A count data model specifies the response probabilities Pj(x) = P[Y = j|x] for
j = 0, 1, 2, · · · with the property

∑∞
j=0 Pj(x) = 1.

• Typical specifications include Poisson regression:

Pj(x) =
exp (−λ(x))λ(x)j

j!
, λ(x) = exp(x⊤β).

• The Poisson distribution satisfies the following properties:

E[Y |X] = exp
(
X⊤β

)
, var[Y |X] = exp

(
X⊤β

)
.
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• The log-likelihood function is given by

ln(β) =

n∑
i=1

logPYi(Xi|β) =
n∑

i=1

(
− exp(X⊤

i β) + YiX
⊤
i β − log(Yi!)

)
.

• Its first and second derivatives are

∂

∂β
ln(β) =

n∑
i=1

Xi

(
Yi − exp(X⊤

i β)
)
, and

∂2

∂β∂β⊤ ln(β) = −
n∑

i=1

XiX
⊤
i exp

(
X⊤

i β
)
,

respectively. Since the second derivative is globally negative definite, the

log-likelihood function is globally concave.
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More Flexibility?

• Nonparametric identification: Suppose that the true conditional mean is

nonparametric. Since it is non-negative, we can write

E[Y |X] = exp (m(x)) ⇐⇒ m(x) = log (E[Y |X]) .

The function m(x) is nonparametrically identified and can be approximated by a

series x⊤KβK , so that E[Y |X] ≃ exp(X⊤
KβK).

• Random coefficients/Negative Binomial model: Specify the Poisson parameter as

λ(X) = V exp(X⊤β) where V is a random variable with a Gamma distribution.

Integrating out V , the resulting conditional distribution for Y is Negative

Binomial. The Negative Binomial is a popular model for count data regression,

and has the advantage that the conditional mean and variance are separately

varying.
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Review on Random Utility Model



Berry and Haile (2021, Handbook of IO)
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Setup: Random Utility Model

• Discrete choice demand is commonly represented with a random utility model.

• Let j = 1, · · · , Ji index the inside goods available to consumer i, while j = 0

denotes the outside good.

• A consumer’s choice set is characterized by Ji and a set χi, which may include

observed characteristics of consumer i, observed characteristics (including prices)

of the available goods, observed characteristics of the local market, and

characteristics of the market or goods that are unobserved to the researcher.

• Each consumer i has a conditional indirect utility (henceforth, utility) uij for good

j. Consumer i knows her utilities for all goods and chooses the good yielding her

highest utility.
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Heterogenous Preference

• Consumer preferences are permnitted to be heterogenous, even when conditioning

on any consumer characteristics included in χi.

• This heterogeneity is modeled by treating utility as varying at random across

consumers: Given the choice set (Ji, χi), each consumer’s utility vector

(ui0, ui1, · · · , uiJi) is an independent draw from a joint distribution Fu(·|Ji, χi).

• Because a consumer’s behavior depends only on her ordinal ranking of goods,

below we will normalize the location and scale of each consumer’s utility vector

w.l.o.g.

• We assume that the distribution Fu(·|Ji, χi) is such that “ties” (uij = uik for

j ̸= k) occur with probability zero.
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Consumer-Specific Choice Probability

• Represent consumer i’s choice with the vector (qi1, · · · , qiJi), where

qij = 1 {uij ≥ uik, ∀k ∈ {0, 1, · · · , Ji}} .

• Then, consumer-specific choice probabilities are given by

sij = E[qij |Ji, χi]

=

∫
Aij

dFu(ui0, · · · , ui1, · · · , uiJi |Ji, χi),

Aij = {(ui0, ui1, · · · , uiJi) : uij ≥ uik ∀k} .

33



Example: 2-Product Case (Berry and Haile, 2021, Figure 1)
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Discrete Choice Demand Model

• A parametric random utility specification:

For j > 0, uijt = xjtβit − αitpjt + ξjt + ϵijt, (10)

For j = 0, ui0t = ϵi0t, (11)

ϵijt is an IID draw from a standard type-1 extreme value distribution,

yielding a mixed2 multinomial logit3 model.

• The notion of a market t is central to this formulation and will allow a precise

characterization of the endogeneity problems inherent to demand estimation.
2The term “mixed” reflects the heterogeneity across consumers in the parameters αit and βit that

characterize their marginal rates of substitution between the various observed and unobserved

characteristics.
3A normal distribution will yield a mixed multinomial probit.
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Market

• Let Jt denote the set of products (inside goods) available to consumers in market

t, and let Jt = |Jt|.
• pijt represents the price of good j in market t.

• xijt ∈ RK represents other observable characteristics of good j in market t.
• ξjt is an unobserved factor (demand shock) associated with good j and market t.

• The demand shock ξjt is often described as a measure of good j’s unobserved

characteristics.

• But this is more restrictive than necessary: ξjt can represent any combination of

latent taste variation and latent product characteristics common to consumers in

market t.

• For example, a high value of ξjt may simply indicate that consumers in market t

have a high mean taste for good j.

• Let xt = (x1t, · · · , xJt,t), pt = (p1t, · · · , pJt,t), ξt = (ξ1t, · · · , ξJt,t), and
χt = (xt, pt, ξt).
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Endogeneity

• Typically, one allows prices pt to be correlated with ξt.
1. Standard models of oligopoly competition imply that prices are endogenous.

2. The equilibrium price of any good j in market t will depend on all components of xt

and ξt, as these alter the residual demand for good j.

3. Equilibrium prices are affected by latent shocks to marginal costs, which we typically

expect to be correlated with demand unobservables.

4. When marginal costs are upward-sloping, this will imply dependence of equilibrium

marginal costs (and thus, prices) on demand shocks.

• Exogeneity of the remaining product characteristics xt is often assumed, and we
will do so in what follows.

• This is not essential.

• On the demand side, allowing endogeneity of additional characteristics is

conceptually straightforward but lead to more demanding instrumental variables

requirements.
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Choice Probabilities in the Population/Market Shares

• Choice probabilities in the population reflect a mixture of the choice probabilities

conditional on each possible combination of (αit, βit).

• In the mixed multinomial logit model, choice probabilities in the population (i.e.,

market shares) are given by

sjt =

∫
exp (xjtβit − αitpjt + ξjt)∑Jt

k=0 exp (xktβit − αitpkt + ξkt)
dF (αit, βit; t), (12)

where F (·; t) denotes the joint distribution of (αit, βit) in market t.

• The latent taste parameters (αit, βit) are often referred to as random coefficients.
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Specification for F (· ; t)

• Each component k of the random coefficient vector βit is commonly specified as

taking the form

β
(k)
it = β

(k)
0 + β(k)

ν ν
(k)
it +

L∑
l=1

β
(l,k)
d dilt. (13)

• β
(k)
0 is a parameter shifting all consumers’ tastes for x

(k)
jt .

• Each dilt represents a characteristics (e.g., demographic measure) of individual i.

• Each ν
(k)
it is a random variable with a pre-specified distribution (e.g., a standard

normal).

• The parametrs β
(l,k)
d and β

(k)
ν govern the extent of variation in tastes for x

(k)
jt across

consumers with different demographic characteristics dit or taste shocks ν
(k)
it .

• The distinction between dilt and ν
(k)
it reflects the fact that each dilt (or at least its

distribution in the population) is assumed to be known.
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• The treatment of the coefficient on price, αit, is similar. A typical specification

takes the form

log(αit) = α0 + αyyit + ανν
(0)
it

• yit represents consumer-specific measures that are posited to affect price sensitivity.

• The variables included in yit might overlap partially or entirely with dit.
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Berry, Levinson and Pakes (1995)
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Berry, Levinson and Pakes (1995)

• Here we review a method of aggregate market demand estimation developed by

Berry, Levinson and Pakes (1995).

• Setup

• Differentiated product market

• Demand: discrete choice model characterized by random utility model

• Supply: multi-product Bertrand competition, in which firms set the prices of their

products

• Contributions of BLP (1995)

• Discrete choice models are usually estimated with individual-level consumer data.

• They proposed an approach for estimating discrete-choice demand only with

aggregate, market-level sales data.
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Recommended Readings

• Berry (1994)

• Berry, Levinson and Pakes (1999)

• Gentzkow and Shapiro (2015)

• Gandhi and Houde (2020)

• Berry and Haile (2021)

• Gandhi and Nevo (2021)

• 上武，遠山，若森，渡辺（2021）「実証ビジネス・エコノミクス第３回（経済セ
ミナー連載）」4

• RA Bootcamp講義資料 [2024] [2025] by 遠山先生
4近日中に書籍化されるようです．
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Market-Level Data

• In many applications, the key data are observed at the market level. In such cases,
one typically observes

• the number of goods Jt available to consumers in each market t;

• their prices and other observable characteristics pt, xt;

• their observed market shares s̃jt, typically measured as the total quantity of good j

sold in market t divided by the number of consumers (e.g., households) in that

market;

• the distribution of consumer characteristics (dit, yit) in each market; and

• (possibly) additional variables wt (e.g., cost shifters) that might serve as appropriate

instruments.
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Estimation with Aggregate Market-Level Data

• The standard approach to estimation of discrete choice demand from market-level

data was developed in BLP (1995), with many subsequent variations and

extensions.

• Here we consider the slightly simplified version of their model with a non-random

coefficient on price. Thus, the random utility specification (10) becomes

uijt = xjtβit − α0pjt + ξjt + ϵijt, (14)

for j > 0, with ui0t = ϵi0t.

• Following BLP (1995), we assume that each ϵijt is an IId drawfrom a standard

type-1 extreme value distribution, and that each ν
(k)
it in (13) is an IID draw from

a standard normal distribution.
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• Observe that (14) can be rewritten as

uijt = δjt + µijt + ϵijt, (15)

where we have defined

δjt = xjtβ0 − α0pjt + ξjt, (16)

µijt =

K∑
k=1

x
(k)
jt

(
L∑
l=1

β
(l,k)
d dilt + β(k)

ν ν
(k)
it

)
. (17)

• Let Fµ(·|xt, βd, βν) denote the conditional joint distribution of the stochastic

terms (µi1t, · · · , µiJtt) given (xt, βd, βν). Given the assumptions above, this

distribution is known up tp the parameters (βd, βν).
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Berry Inversion

• Letting δt = (δ1t, · · · , δJtt), the market shares implied by the model take the form

σj(δt, xt, βd, βν , Jt) =

∫
exp (δjt + µijt)∑Jt
k=0 exp (δkt + µikt)

dFµ(µit|xt, βd, βν , Jt) (18)

for each good j.

• Berry (1994) demonstrated that the demand system

σ(δt, xt, βd, βν , Jt) = (σ1(δt, xt, βd, βν , Jt), · · · , σJt(δt, xt, βd, βν , Jt))

is invertible. Given xt, βd, βν and any vector of nonzero market shares

s = (s1, · · · , sJt) in market t such that 1−
∑

j>0 sjt > 0, there exists a unique

vector δ for market t such that

σ(δ, xt, βd, βν , Jt) = s.
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The BLP Estimator

• At the broadest level, an estimation strategy involves searching (or solving) for the

parameters of the model that allow it to best fit the data.

• Let θ ≡ (α0, β0, βd, βν) represent all the parameters of the model.

• It will be useful to partition these as θ1 ≡ (α0, β0) and θ2 ≡ (βd, βν).

• In the literature, the elements of θ1 are often referred to as the linear parameters

and with θ2 referred to as nonlinear parameters.

• Note that we can rewrite the model’s prediction of market shares (18) as

sjt = σj(δt, xt, θ2, Jt).

• Because the identification of the model will rely on instrumental variables, it is

natural to formulate an estimator using moment consditions. BLP (1995)

proposed a generalized method of moments (GMM) estimation approach.
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• Let T denote the number of markets in the sample and let N =
∑T

t=1.

• The BLP estimator θ̂ is defined as the solution to a mathematical program:

minθg (ξ(θ))
⊤Ω g (ξ(θ))

subject to

g (ξ(θ)) =
1

N

∑
∀j,t

ξjt(θ)zjt

ξjt(θ) = δjt(θ2)− xjtβ + αpjt

log(s̃jt) = log (σj(δt, xt, θ2, Jt))

σj(δt, xt, θ2, Jt) =

∫ exp
(
δjt(θ2) + xjtβ̃

)
1 +

∑
k exp

(
δkt(θ2) + xktβ̃

)fβ̃(β̃|θ2),
where Ω denotes the standard GMM weight matrix and fβ̃(·|θ2) denotes the joint

density of β̃it = βit − β0, i.e., the consumer-specific components of the

coefficients βit. 49



Sketch of GMM Estimation Approach (Berry and Haile, 2021, Section 4.1)

50

https://www.sciencedirect.com/science/article/abs/pii/S1573448X21000017


Computation & Inference

• See Section 4.4 of Berry and Haile (2021) for details.
• Open-source software: PyBLP

• Conlon and Gortmaker (2020) serve as an introduction.
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Choice of Instruments

• For the use of proxies of cost shifters, see e.g., Hausman, Leonard and Zona

(1994); Hausman (1996); and Nevo (2001).

• For the use of exogenous characteristics of competing goods (BLP instruments),

see e.g., BLP (1995); and Berry and Haile (2021, Sections 4.2.5 and 5.4).

• For the use of characteristics nearby markets (Waldfogel-Fan instruments), see

e.g., Waldfogel (2003); Fan (2013); Williams and Adams (2019); and DellaVigna

and Gentzkow (2019).

• For the use of exogenous changes in market structure, see e.g., Miller and

Weinberg (2017).

• For the notion of “optimal” instruments, see e.g., BLP (1999); Reynaert and

Verboven (2014); Gandhi and Houde (2020); and Conlon and Gortmaker (2020).
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Appendix:

Semiparametric Discrete Choice

Model (Kaneko & Toyama, 2025)
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Kaneko & Toyama (2025)

• A semiparametric discrete choice model

• Proposing nonparametric sieve approximation of income effect

• Resulting in more accurate estimation of demand curvature, price elasiticity, and

welfare changes.

• Empirical application

• A feebate policy in the Japanese automobile industry5

• High pass-through rate

• More significant merger effects (Toyota & Honda)

5Subsidy for eco-friendly cars.
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Consumer Demand

• Accurate measurement of consumer demand is critical.

• Price elasticity and substitution patterns are often what firms must consider.

• Decision-making on pricing in oligopolistic markets

• Evaluating the welfare consequences
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Specification for Income Effects

• When estimating consumer demand for differentiated products, it is common to

rely on parametric specifications.

• However, such parametrizing often imposes strict restrictions on the shape of

demand curve.

• A semiparametric discrete choice model can adress this concern:

• This allows for the flexible estimation of demand curvature and price elasticity

patterns.
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Demand Estimation with Flexible Income Effect

• Combine a method of sieve approximation and nested fixed point algorithm.

• First, approximate the income effect by nonparametric sieve methods.

• Then, their model is closely aligns with the standard parametric framework of BLP.

• Second, implement a nested fixed-point algorithm to run sieve GMM estimation.
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Utility Maximization Problem

• Let U(m, j) denote the direct utility function.

• m is a dm dimensional vector representing the consumption of continuous choice

goods.

• j ∈ J = {0, 1, · · · , J} corresponds to an alternative in the discrete choice decision,

with J products available in the market. The index j = 0 indicates the outside

goods.

• The utility maximization problem is given by

max
(m,j)∈Rdm

+ ×J
U(m, j) (19)

s.t. P T
mm+ pj ≤ yi,

where Pm is a dm dimensional vector of prices of continuous choice goods, pj is

the price of alternative j, and yi is income.
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Conditional Indirect Utility Function

• Conditional on choice j in the discrete choice, the conditional indirect utility

function is defined as

V (Pm, y − pj , j) ≡ max
m∈Rdm

+

U(m, j) s.t.P T
mm ≤ yi − pj . (20)

Note that we define p0 = 0 as choosing the outside good incurs no costs.

• Assume that the direct utility function satisfies

U(m, j) = v(j) + u(m). (21)

• The conditional indirect utility function can be rewritten as

V (Pm, y − pj , j) = v(j) + Ṽ (Pm, y − pj). (22)
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Income Effect

• Assume that the continuous good is a numeraire, with its price represented by

Pm. Then, we obtain

Ṽ (Pm, y − pj) = u

(
y − pj
Pm

)
,

implying that the utility from numeraire depends on the disposal income y − pj

after choosing alternative j.

• Define the income effect term by

f(y − pj) ≡ Ṽ (Pm, y − pj).

Note that f(y − pj) should be weakly-increasing.
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Conditional Indirect Utility Function

• Letting vij denote consumer i’s utility from a discrete choice good j, we specify

that

vij = βTXj + ξj + ϵij for j = 1, · · · J, (23)

vi0 = ϵi0. (24)

where Xj is a vector of observable characteristics of product j, ξj represents its

unobservable characteristics, and ϵij is an IID idiosyncratic shock that follows the

type I extreme-value distribution.

• Hence, the conditonal indirect utility function of consumer i when choosing j is

given by

Vij =

f(yi − pj) + βTXj + ξj + ϵij for j = 1, · · · J,

f(yi) + ϵi0 for j = 0.
(25)
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Individual Choice Probability

• Define the choice set of consumer i as

Jit = {0} ∪ {j ∈ {1, · · · , Jt} : yit − pjt ≥ 0} , (26)

where Jt is the total number of products available in market t.

• Given the conditional indirect utility Vijt (25), the discrete choice problem is

described as

max
j∈Jit

Vijt. (27)

and the choice probability for consumer i selecting alternative j is derived as

sijt(yit) =

1(yit ≥ pjt) · exp
(
f(yit − pjt) + βTXjt + ξit

)
exp (f(yit)) +

∑Jt

k=1 1(yit ≥ pkt) · exp (f(yit − pkt) + βTXkt + ξit)
. (28)
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Market Share

• Letting yit follow the distribution of income Gt(yit), the market share is given by

sjt =

∫
sijtdGt(yit). (29)

• Market demand qjt is given by

gjt = Nt × sjt

where Nt denote the market size.
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Practical Importance of the Flexible Income Effect

• Price Elasiticity: Avoid imposing any predetermined restrictions on how own-price

elasticity varies with price.

• Pass-Through Analysis: Avoid inherent restriction on the demand curvature.

• Merger Analysis: Different curvatures of the demand funtion lead different

simulated merger outcomes even under the same consumer demand with identical

elasticities.
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Estimation

• The utility function includes the nonparametric function f(y − p) and the linear

parameter β.

• Employ a sieve approximation for the nonparametric function and incorporate it

into the nested fixed-point (NFP) algorithm.
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Sieve Approximation

• Approximate f(·) by the K-th order Bernstein polynomial, i.e., by a linear

function of the basis function ΨK(x) = (bK0 (x), bK1 (x), · · · bKK(x))T and

coefficients Π = (π0, π1, · · ·πk)T :

f(x) ≃ BK(x) =

K∑
k=0

πkb
K
k (x) ≡ ΨK(x)TΠ (30)

where

bKk (x) =

(
K

k

)
xk(1− x)K−k, (31)

and letting x be normalized to [0, 1].
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Shape Restrictions & Normalization

• Select the Bernstein polynomial as a basis function.

• Recall that f(y − p) is weakly increasing (monotonicity). To incorporate this

restriction within estimation, we impose constraints on the coefficients Π.

• Under πk ≤ πk+1 for all k, the derivative of BK(x) (30) satisfies that

B′
K(x) = K

K−1∑
k=0

(πk+1 − πk)b
K−1
k (x) ≥ 0

for all k, which is the desired monotonicity.

• The level of the income effect cannot be identified. Thus, letting π0 = 0, we

normalize f(x) as f(0) = 0.
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Approximated Model

• Under the sieve approximation above, the market share defined by (28) and (29)
can be rewritten as

sjt =∫
1(yit ≥ pjt) · exp

(
ΨK(yit − pjt)

TΠ+ βTXjt+ ξjt
)

denom.
dGt(yit), (32)

where the denominator is given by

exp
(
ΨK(yit)

TΠ
)

+

Jt∑
k=1

1(yit ≥ pjt) · exp
(
ΨK(yit − pjt)

TΠ+ βTXkt + ξjt
)

• Note that there emerges an endogeneity between the product proce pjt and the

unobserved product characteristics ξjt.

68



Sieve GMM

• Moment Conditions: for b = 1, · · · , B,

E [ξjt(θ)pb(Xjt,Wjt)] = 0, (33)

where Xjt is a vector of exogenous variables, Wjt is a vector of IVs, θ = (β,Π),

{pb(Xjt,Wjt)}b=1,··· ,B is a sequence of known functions that can approximate any

real-valued square-integrable functions of Xjt and Wjt as B → ∞.

• GMM Criterion:

ξ(θ)T P̃
(
P̃ T P̃

)−
P̃ T ξ(θ)T , (34)

where ξ(θ)T is a vector that stacks ξjt’s. The matrix P̃ = [P, P ⊗X] denotes a

matrix of instruments.
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NFP Algorithm

• Caluculation of the objective function & numerical optimization procedures are as
follows:

• 1. Caluculate the vector of mean utility δ by applying a contraction-mapping

algorithm.

• 2. Run a linear regression of δ on X and obtain β̂ and the residual ξ̂jt.

• 3. Caluculate the value of the objective function (34).

• 4. Run a nonlinear optimization routine over Π. 6

• Inference: Generalized residual bootstrap

6Note that β appearing in the mean utility function can be obtained by employing a linear GMM.
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Conclusion

• A new framework for a differentiated product demand model with a

nonparametric income effect

• Estimate the semiparametric model with endogeneity by combining the NFP

algorithm and a sieve approximation.

• Monte Carlo simulations suggest significant gains in estimating the nonparametric

term of the income effect by incorporating the shape restriction.

• Applying their framework to Japanese automobile data, they demonstrate the

importance of a flexible income effect specification.
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