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Review on Sections 26.1-26.6




Multinomial Response

e Suppose that we have a multinomial random variable Y € {1,2,---,J}, and
k-dimensional regressors X € R.

e The conditional distributions of Y given X is summarized by the response
probability

Pj(z) =P (Y =j|X =2x).

e The response probabilities Pj(x),--- , Py(x) are nonparametrically identified and
can be arbitrary functions of x.



Latent Utility

e Multinomial response is typically motivated and derived from a latent utility
model. Assume that the utility of choosing alternative j is expressed as

Uy = X5 +¢ (1)

where 3; are coefficients and ¢; is an idiosyncratic error of individual- and
product-level.

e An individual is assumed to select the alternative with the highest utility:
Y=j = U >U foralll.

e To identify 3; in (1), researchers are required to impose a normalization. The
standard choice is to set 3; = 0 for a base alternative j and interpret the reported
coeeficients [3; as differences relative to the base alternative.



Simple Multinomial Logit

e Assume that the utility of alternative j is given by (1), and the error vector

(€1, -+ ,€7) has the generalized extreme value (GEV) joint distribution:
7 T
.
F Sty = e — e <_7j>
(e1 €J) = exp jE_l xp (=

e Then, the response probabilities equal

Pi(X) = exp (Xj'ﬁj) _ (2)
’ lezl €xp (g)



e The canonical multinomial logit model is an extension of the binary logit model to
the case with an unordered multinomial dependent variable and heterogenous
coefficients f3;'s.

e The explanatory vector X is common across the choices in the multinomial logit
model.

e Note that the scale of the coefficients 7 is not identified.



Maximum Likelihood Estimation

e Noting that the response probabilities in (2) are functions of the parameter vector
B = (B1, - ,Ps). we can express the probability mass function for Y as

J
m(Y]X, ) =[] P(x19)" =,
j=1
e Thus, the log-likelihood function is given by
n J
W(B)=> Y 1{Y; = j}log P;(Xi|B).
i=1 j=1
e Then, the maximum likelihood estimator (MLE) is B: arg max [, (), which has
B

no algebraic solution and so needs to be found numerically.



Marginal Effect

e The coefficients themselves are difficult to interpret.

e In applications, it is common to examine and report marginal effects:

J
dj(z) = %Pj(l’) = Pj(x) (5;‘ - Zﬁlﬂ(@) ;
=1

which can be estimated by
o~ —~ ~ J AN AN
dj(z) = Pj(z) (ﬁj - ZBzB(@) :
=1

e The average marginal effect AME; = E [§;(X)] can be estimated by
AVE, — L0, (%)



Conditional Logit

e Assume that the utility of alternative j is given by
* _ oy .
U =X, v+¢,
and the error vector (ei,--- ,€y) are distributed IID Type 1 extreme value:
F(ej) = exp(—exp(—¢)), j=1,---,J

e Then, the response probabilities equal

Pj(w, ) = o (%T 7> . (3)
Sy exp (] 7)
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The conditional logit model is an extension of the binary logit model to the case
with heterogenous explanatory vectors X's across choices.

The coefficient v does not depend on the chioces in the conditional logit mnodel.
Let @ = (51, -+, 87,7). Given the observations {Y;, X;} where

X; = (X4, , X i), the log-likelihood function is

n J
n(0) = > > 1{Y; = j}log P;(X;|0).

i=1 j=1
The MLE is given by = arg max 1,,(0), which has no algebraic solution and
0

needs to be found numerically.
Marginal effects are defined as

0

for j, d;5(x) = 8—%PJ(1‘) = vyPj(w,x) (1 — Pj(zx)), and
for j £, dnla) = 5= Py(a) = —1Py{uw.2)Pia).

11



Slight Extensions of Conditional Logit

e Under the following assumptions on utilituy:

Ur =W'Bj+ X, v +¢, or
UJ‘.‘ =Wpj + Xjy1 + XjWr +¢; (for notational simplicity, W € R, X; € R)

similar results to the one above can be easily obtained.

12



Independence of Irrelevant Alternatives (11A)

e In the canonical multinomial logit model, the response probabilities are given by
(2), which leads to the following unrealistic restriction:

P;(X10) _ exp(XTBj) ()
P(X|0)  exp(XTH)

e This restriction (4) is called independence of irrelevant alternatives (II1A), meaning
that the choice between j and [ is independent of the other alternatives and hence
the latter are irrelevant to the bivariate choice between j and I.

e Where does this IIA problem arise? The IIA structure (coming from multinomial
logit model) excludes differentiated substitutability among alternatives.

e In other words, (part of) the problem is due to the restrictive correlation pattern
imposed on the errors by the GEV distribution.

13



Nested Logit

e A more flexible correlation structure can mitigate the IIA problem, which allows
subsets of alternatives to have differential correlations.

e One solution is the nested logit model, which separates the alternatives into
groups (nests). Alternatives within groups are allowed to be correlated, but are
assumed uncorrelated across groups.

e Suppose that there exist J groups each with K alternatives. Assume that the
utility of the jk-th alternative is given by

J | K 7
k= W' Bk + XjT,ﬂ + €k, Fler, - ,egk,) =exp | — Z Zexp <—6j_k>
i=1 | k=1 J
where W and X;. denote individual-specific regressors and regressors varying by
alternative, respectively.

14



e Under the above structure, the nested logit response probabilities are given by

Pji = Py ; Pj,

wT X %% X Tj
(M) (g ()
P. _

where

Py =

Tj

e Letting 6 be the parameters, the log-likelihood function is given by
K;

J
D> 1Y = jk} (log Py (Wi, Xil0) + log Py(Wi, Xi[0)) .
15=1 1

n
i= k=

e Marginal effects can (in principle) be caluculated but are complicated functions of
the coefficients.

J T T
w X W B+ X,
S e <5k+w> Sy (S exp (At )
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Mixed Logit




Mixed Logit (Random Coefficient Logit)

e Another solution to the IlA issue is the mixed logit (random coefficient logit)
model.

e Suppose that there exist J alternatives. Assume that the utility of the j-th
alternative is given by

Ur=W'B8+ X n+e, (5)

where 7 is an individual-specific random variable with distribution F'(n|a) with

parameters «, and ¢; is an error with |ID extreme value.
e Typical choices for F'(n|«)
e 1) ~ Normal(~, D) with diagonal covariance matrix D
e 1 ~ Normal(y, ) with unconstrained covariance matrix %
e Log-normally distributed 7 (to enforce > 0)

e For computational simplicity, it is common to partition X; so that some variables

have random coefficients and others have fixed coefficients. 16



How mixed logit mitigate 11A?

e Letting v =E[n] and V; = X]T(n — ) + €j, the model in (5) can be rewritten as
Ui =W'Bi+ X/ v+Vj,

which is the conventional random utility framework with errors V.

o Notice that the errors V; are conditionally heteroscedastic and correlated across
alternatives:

E[V;Vi|X; X)) = X var(n) Xi.

Here, the non-zero correlation means that the [IA property is partially broken,

providing the mixed logit model with more flexibility than the conditional logit
model.

17



Response Probability & Log-Likelihood

e The conditional response probabilities given 7 is
exp (wTﬂj + xjn)
Zijzl exp (w' B + 2/ n) ’

Pj(w,x|n) =

following from (3).

e The unconditional response probabilities are given by

Py(w.o) = [ Py(w.alm)dF(ila). (6)

o Letting 0 be the list of all parameters, the log-likelihood function is given by

n J
n(0) =Y 1{Yi = j}log P;(Wi, Xi6).

i=1 j=1

18



Monte Carlo Integration

The integral in (6) is not available in closed form.

A standard implementation is Monte Carlo integration (estimation by simulation).

Let {n1, -+ ,na} be a set of IID pseudo-random draws from F'(n|a).

The simulation estimator of (6) is

(w, z|ng),

IIMQ

which converges in probability to P;(w,z) in (6) as G increases.

19



Simple Multinomial Probit




Simple Multinomial Probit

e The simple multinomial probit model assumes that the utility from alternative j is
given by

Ur =W'Bj+e¢j, ¢ ~IID, Normal(0,1), (7)

which is identical to the simple logit model, except for the error structure.

e As it assumes that the errors are independent, the simple multinomial probit
model does not allow two alternatives to be close substitutes, which is not, but
similar to, the IlA.

20



Conditional Multinomial Probit

e The conditional multinomial probit model assumes that the utility from alternative
j is given by

Ui =W'Bi+ X/ v+¢, € ~IID, Normal(0,1), (8)

which is identical to the conditional logit model, except for the error structure.

e Note that the simple multinomial probit structure (7) is a special case of the
conditional multinomial models.

21



Response Probabilitiy

e Under the structure (8), the response probabilities are given by the following
one-dimensional normal integral over the J — 1 fold product of normal distribution

functions:
(W, X)) / H(I) WT B+ (X;— X)) Ty + y) o(v)dv,  (9)
O U#j
where ®(-) and ¢(-) are the CDF and PDf of Normal(0, 1), respectively.
e The response probabilities (9) are not available in closed form.

e Letting 0 denote the parameters, The log-likelihood function is given by

n J
— ZZ {Y; = j}log P;(W;, X;0).

i=1 j=1

22



General Multinomial Probit




General Multinomial Probit

e The general multinomial probit model assumes that the utility from alternative j
is given by

U; = WTﬂj + Xj—-ry +¢€j, €~ Normal(0,Y),

where ¥ is an unconstrained variance-covariance matrix.
e |dentification:

e The coefficients 3; and  are only identified up to scale.
e The coefficients 3; are only identified relative to a baseline alternative J.
e Y requires some normalization.®

e The response probabilities is typically estimated by simulated maximum likelihood

(SML), which is developed by Geweke, Hajivassiliou and Keane (1997, GHK).
!Note that the scale of differenced utility U; — U} cannot be identified.
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Ordered Response




Ordered Response

o Let Y ={1,---,J} be an ordered discrete variable and X be a vector of
regressors. Here we assume that X does not include the intercept.
e The standard approach to ordered response assumes the latent utility framework:

U'=X"B+e e~QG.
Under the above structure, the ordered response model specifies that the response
Y is determined by the following set of threshold crossing rules:

Y=1 if U'<a,

Y=2 if oy <U"<ay,

Y=J if aj<U"

where a; < --- < ay_1 are unknown, non-stochastic, parameters. -



Response Probability & Log-Likelihood

e The distribution G(-) of the error € is typically assumed known. Common choices
include € ~ Normal(0, 1) (ordered probit) and € ~ A(z) = exp(z)/[1 + exp(z)]
(ordered logit).

e The response probabilities are given by

Py() = PIY = jIX =a] = - = Gla — 2 B) - Glay1 — 2" B),
and the marginal effects by
0
S-Pi(a) = 8 (g1 — T 8) — glay —=78)).
e Letting 6 = (B, a1, -+ ,ay_1), the log-likelihood function is given by

n J
(0) = > > 1{Y; = j}log Pi(X;|0).

i=1 j=1

25



e |t may be easier to interpret the cumulative response probabilities:
P[Y <j|X = 2] = G(aj — 2" B).
The marginal cumulative effects are

9
5PV < lX = 2] = —Bg(a; - ' B).

26
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Count Data

e While the multinomial model and the ordered choice model assume that the
maximum realization of the discrete dependent variable is known a priori, the
econometrician may not have such a priori knowledge.

o Let Y € {0,1,2,---} be a discrete dependent variable with unbounded support.
A count data model specifies the response probabilities P;(z) = P[Y = j|z] for
j=0,1,2,--- with the property > 72 Pj(z) = 1.

e Typical specifications include Poisson regression:

exp (=A\(x)) A(z)?
o) = B2

e The Poisson distribution satisfies the following properties:

. Aa) = exp(zB).

E[Y|X] = exp (XTB> , var[Y|X] =exp (XTB) .

27



e The log-likelihood function is given by

n

=Y log Pr(Xil8) = > (— exn(X[T8) + ;X[ B~ log(¥ih)).

i=1 i=1

e |ts first and second derivatives are

ZX( — exp XTB))
32

SaaaTin(8) = =) XX exp (X5,
03057 Z; x (X75)

respectively. Since the second derivative is globally negative definite, the
log-likelihood function is globally concave.

28



More Flexibility?

e Nonparametric identification: Suppose that the true conditional mean is

nonparametric. Since it is non-negative, we can write
E[Y|X] = exp (m(z)) <= m(x) = log (E[Y|X]).

The function m(z) is nonparametrically identified and can be approximated by a
series - Bx, so that E[Y|X] ~ exp(X k).

e Random coefficients/Negative Binomial model: Specify the Poisson parameter as
A(X) = Vexp(XTB) where V is a random variable with a Gamma distribution.
Integrating out V, the resulting conditional distribution for Y is Negative
Binomial. The Negative Binomial is a popular model for count data regression,
and has the advantage that the conditional mean and variance are separately

varying.
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Berry and Haile (

, Handbook of 10)

Handbook of Industrial Organization
Volume 4, Issue 1,2021, Pages 1-62
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Chapter 1 - Foundations of demand
estimation * :

StevenT. Berry &

Philip A. Haile
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Abstract

Demand elasticities and other features of demand are critical determinants of the
answers to most positive and normative questions about market power or the
functioning of markets in practice. As a result, reliable demand estimation is an essential
input to many types of research in Industrial Organization and other fields of economics.
This chapter presents a discussion of some foundational issues in demand estimation. We
focus on the distinctive challenges of demand estimation and strategies one can use to
overcome them. We cover core models, alternative data settings, common estimation
approaches, the role and choice of instruments, and nonparametric identification.
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Setup: Random Utility Model

Discrete choice demand is commonly represented with a random utility model.

Let j =1,---,J; index the inside goods available to consumer ¢, while 5 =0

denotes the outside good.

A consumer’s choice set is characterized by J; and a set x;, which may include
observed characteristics of consumer i, observed characteristics (including prices)
of the available goods, observed characteristics of the local market, and
characteristics of the market or goods that are unobserved to the researcher.

Each consumer i has a conditional indirect utility (henceforth, utility) w;; for good
7. Consumer ¢ knows her utilities for all goods and chooses the good yielding her

highest utility.

31



Heterogenous Preference

e Consumer preferences are permnitted to be heterogenous, even when conditioning
on any consumer characteristics included in ;.

e This heterogeneity is modeled by treating utility as varying at random across
consumers: Given the choice set (.J;, x;), each consumer’s utility vector
(wio, Uit -+, uig;) is an independent draw from a joint distribution F,(|J;, x;).

e Because a consumer’s behavior depends only on her ordinal ranking of goods,
below we will normalize the location and scale of each consumer’s utility vector
w.l.o.g.

e We assume that the distribution Fy,(-|.J;, x;) is such that “ties” (u;; = u;, for
j # k) occur with probability zero.

32



Consumer-Specific Choice Probability

e Represent consumer i's choice with the vector (g1, , i, ), where
¢ij = 1{wi; > wi,, Vke{0,1,---,J;}}.
e Then, consumer-specific choice probabilities are given by
sij = Elqij|Ji, xi]
:/A dFy(wio, - -+ uin, - uig|Ji, Xi),

ij

Aij = {(wio, wit, - -+ s wig,) @ wij > uip Vk} .

33



Example: 2-Product Case (Berry and Haile, , Figure 1)

Hi2 .
A45°
A 4
,,,,,,, ]
- An
Ao 07
(0,0) P il

FIGURE 1
Choice regions for goods O, 1, and 2

To illustrate. consider an example with J; = 2. Let p; denote the price of good j

and let
uij = pij = pj

for j > 0. where (u;1, pi2) are drawn from a joint distribution F,(-). Set ujo = 0.
normalizing the location of utilities. Fig. | then illustrates the regions in (u;1, pi2)-
space leading consumer i to choose goods 0. 1. and 2. For example. only consumers
for whom pj2 — pa > 0 prefer good 2 to the outside option. The dark gray region is the
set of (i1, pi2) combinations such that this holds and ;2 — p2 > pi1 — p1. i.e.. the
set Aj. Similarly, the light gray region corresponds to .A4;;. The choice probabilities
for consumer i then correspond to the probability measure assigned to each region by
Fu().
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Discrete Choice Demand Model

e A parametric random utility specification:

For j >0, wijr = 2B — aupje + &t + €ijt, (10)
For j =0, wor = €iots (11)

€;j¢ is an 11D draw from a standard type-1 extreme value distribution,

yielding a mixed? multinomial logit® model.

e The notion of a market ¢ is central to this formulation and will allow a precise
characterization of the endogeneity problems inherent to demand estimation.

2The term “mixed” reflects the heterogeneity across consumers in the parameters o, and S;; that
characterize their marginal rates of substitution between the various observed and unobserved
characteristics.

3A normal distribution will yield a mixed multinomial probit.
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e Let J; denote the set of products (inside goods) available to consumers in market
t, and let J; = | Ty

e p;j: represents the price of good j in market ¢.

® T;jt € RX represents other observable characteristics of good j in market .

e ;i is an unobserved factor (demand shock) associated with good j and market ¢.

e The demand shock ¢;t is often described as a measure of good j's unobserved
characteristics.

e But this is more restrictive than necessary: §;; can represent any combination of
latent taste variation and latent product characteristics common to consumers in
market ¢.

e For example, a high value of £;; may simply indicate that consumers in market ¢
have a high mean taste for good j.

o Let Ty = (xltv T 7th,t)v Pt = (plt; T 7th,t)v ft - (flta e 7£Jt,t)r and

Xt = (24,1, &). 36



Endogeneity

e Typically, one allows prices p; to be correlated with &.
1. Standard models of oligopoly competition imply that prices are endogenous.
2. The equilibrium price of any good j in market ¢ will depend on all components of z;
and &, as these alter the residual demand for good j.
3. Equilibrium prices are affected by latent shocks to marginal costs, which we typically
expect to be correlated with demand unobservables.
4. When marginal costs are upward-sloping, this will imply dependence of equilibrium
marginal costs (and thus, prices) on demand shocks.
e Exogeneity of the remaining product characteristics z; is often assumed, and we
will do so in what follows.
e This is not essential.
e On the demand side, allowing endogeneity of additional characteristics is
conceptually straightforward but lead to more demanding instrumental variables
requirements.
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Choice Probabilities in the Population/Market Shares

e Choice probabilities in the population reflect a mixture of the choice probabilities
conditional on each possible combination of (a, Bit)-

e In the mixed multinomial logit model, choice probabilities in the population (i.e.,

market shares) are given by

o= JteXp (2t Bit — cutpjt + Ejt) dF (aur, Bins 1), (12)
Do exp (@ Bir — irDrt + Ekt)

where F'(-;t) denotes the joint distribution of (ay, Bit) in market ¢.

e The latent taste parameters (o, 3i;) are often referred to as random coefficients.

38



Specification for F'(-; t

e Each component k of the random coefficient vector 3;; is commonly specified as

taking the form
8 = 8 + pEvp +Zﬂ<“” it (13)

( )is a parameter shifting all consumers’ tastes for x(k).

° Each dii¢ represents a characteristics (e.g., demographlc measure) of individual i.
e Each VZ.(tk) is a random variable with a pre-specified distribution (e.g., a standard

normal).

e The parametrs 5”’“ and 5(k) govern the extent of variation in tastes for x(]:) across
consumers with different demographic characteristics d;; or taste shocks u(k).

e The distinction between d;;; and 1/( ) reflects the fact that each dii¢ (or at least its

distribution in the population) is assumed to be known.
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e The treatment of the coefficient on price, vy, is similar. A typical specification

takes the form
(0)

log(az‘t) = o + QylYit +

e y;; represents consumer-specific measures that are posited to affect price sensitivity.
e The variables included in y;; might overlap partially or entirely with d;;.
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Econometrica, Vol. 63, No. 4 (July, 1995), 841-890

AUTOMOBILE PRICES IN MARKET EQUILIBRIUM

BY STEVEN BERRY, JAMES LEVINSOHN, AND ARIEL PAKES'

This paper develops techniques for empirically analyzing demand and supply in
differentiated products markets and then applies these techniques to analyze equilibrium
in the U.S, automobile industry. Our primary goal is to present a framework which
enables one to obtain estimates of demand and cost parameters for a class of oligopolistic
differentiated products markets. These estimates can be obtained using only widely
available product-level and aggregate consumer-level data, and they are consistent with a
structural model of equilibrium in an oligopolistic industry. When we apply the tech-
niques developed here to the U.S. automobile market, we obtain cost and demand
parameters for (essentially) all models marketed over a twenty year period.

KEYWORDS: Demand and supply, differentiated products, discrete choice, aggregation,
simultaneity, automobiles.
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Berry, Levinson and Pakes ( )

e Here we review a method of aggregate market demand estimation developed by
Berry, Levinson and Pakes (1995).
e Setup
e Differentiated product market
e Demand: discrete choice model characterized by random utility model
e Supply: multi-product Bertrand competition, in which firms set the prices of their
products
e Contributions of BLP (1995)
e Discrete choice models are usually estimated with individual-level consumer data.
e They proposed an approach for estimating discrete-choice demand only with

aggregate, market-level sales data.
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Recommended Readings

e Berry (1994)

e Berry, Levinson and Pakes (1999)

e Gentzkow and Shapiro (2015)

e Gandhi and Houde (2020)

e Berry and Haile (2021)

e Gandhi and Nevo (2021)
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Market-Level Data

e In many applications, the key data are observed at the market level. In such cases,
one typically observes

the number of goods J; available to consumers in each market ¢;

their prices and other observable characteristics py, x¢;

their observed market shares 5, typically measured as the total quantity of good j
sold in market ¢ divided by the number of consumers (e.g., households) in that
market;

the distribution of consumer characteristics (d;¢, y;¢) in each market; and

(possibly) additional variables w; (e.g., cost shifters) that might serve as appropriate
instruments.
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Estimation with Aggregate Market-Level Data

e The standard approach to estimation of discrete choice demand from market-level
data was developed in BLP (1995), with many subsequent variations and

extensions.

e Here we consider the slightly simplified version of their model with a non-random
coefficient on price. Thus, the random utility specification (10) becomes

Uije = TjBir — aopje + &t + €t (14)

for j > 0, with u;o; = €0¢.
e Following BLP (1995), we assume that each ¢;j; is an Ild drawfrom a standard

type-1 extreme value distribution, and that each VZ»(tk) in (13) is an 11D draw from
a standard normal distribution.
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e Observe that (14) can be rewritten as

Uijt = Oj¢ + Mijt + €ijis (15)
where we have defined
djt = wjtfo — aopjt + Ejts (16)
5w (& Lk k
pije =y <Z By di + BV )> . o
k=1 =1

o Let F,(-|x¢, Ba, Bv) denote the conditional joint distribution of the stochastic
terms (e, -+ 5 fig,e) given (zy, Bq, Bu). Given the assumptions above, this
distribution is known up tp the parameters (54, 5,).
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Berry Inversion

o Letting 0; = (d1¢,- -+ ,0,¢), the market shares implied by the model take the form

exp (0j¢ + fij
05 (0t, Tt, Ba, By, Jt) = 7 P (0 + st dF,(pitlze, Ba, By, Je)  (18)
>0 ©XP (Ot + Likt)

for each good j.
e Berry (1994) demonstrated that the demand system

g(5t7 Tt, 5d) Bl/v Jt) - (Ul<5t7 Tty 6d7 /81/7 Jt)7 L, 0 ((5t7 Tty Bd7 /81/7 Jt))

is invertible. Given x¢, 84, 5, and any vector of nonzero market shares
s =(s1,-++,sy,) in market ¢ such that 1 — 3., sji > 0, there exists a unique
vector ¢ for market ¢ such that

0(67 Tty Bda Buv Jt) =S.
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The BLP Estimator

e At the broadest level, an estimation strategy involves searching (or solving) for the
parameters of the model that allow it to best fit the data.
e Let 0 = («w, Po, Ba, Bv) represent all the parameters of the model.

e It will be useful to partition these as 61 = (ay, 8p) and 0> = (B4, 5.).

e In the literature, the elements of 6 are often referred to as the linear parameters
and with 05 referred to as nonlinear parameters.

e Note that we can rewrite the model’s prediction of market shares (18) as

Sjt = O—j(éta T, 02, Jf)

e Because the identification of the model will rely on instrumental variables, it is
natural to formulate an estimator using moment consditions. BLP (1995)
proposed a generalized method of moments (GMM) estimation approach.
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e Let 7" denote the number of markets in the sample and let N = EtT:r
e The BLP estimator @ is defined as the solution to a mathematical program:

mingg (£(9))" 29 (£(0))
subject to
9(E0) = 1 3 6102
Vit
§ie(0) = 6;1(02) — 8 + apj
log(8;¢) = log (0(8¢, 2, 02, Jt))

exp (5]- (02) + xjt,f;’) ~
—15(316,),
14+, exp (5kt(92) + xktﬁ)

where € denotes the standard GMM weight matrix and f;(-|02) denotes the joint
density of Bit = Bit — Bo, i.e., the consumer-specific components of the

Uj(5t7$t7 627 ‘]t) = /

coefficients (3;;. 49



Sketch of GMM Estimation Approach (Berry and Haile, , Section

1. take a trial value of the parameters #;

2. for each market 7, “invert” the demand model at the observed mar-
ket shares 5, to find the unique vector & € R such that. given the
definition (4.3), o (8;, x7, 02, J;) =5, for all j;

3. evaluate the trial value 8 using a GMM criterion function based on
moment conditions of the form

E[_Sjt(('))er] =0,

where zj; D xj; is a vector of appropriate instrumental variables;
4, repeat from step 1 until a minimum is found.
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Computation & Inference

e See Section 4.4 of Berry and Haile (2021) for details.
e Open-source software: PyBLP
e Conlon and Gortmaker (2020) serve as an introduction.

The RAND Journal
of Economics

Qriginal Article

Best practices for differentiated products demand estimation
with PyBLP

Christopher Conlon g Jeff Gortmaker &4

First published: 26 November 2020 | https://doi.org/10.1111/1756-2171.12352 | Citations: 91

Thanks to Steve Berry, Jeremy Fox, Phil Haile, Mathias Reynaert, and Frank Verboven and seminar
participants at NYU, Rochester, and the 2019 110C conference. Thanks to the editor Marc Rysman and to
three anonymous referees. Daniel Stackman provided excellent research assistance. Any remaining
errors are our own.
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Choice of Instruments

For the use of proxies of cost shifters, see e.g., Hausman, Leonard and Zona
(1994); Hausman (1996); and Nevo (2001).

For the use of exogenous characteristics of competing goods (BLP instruments),
see e.g., BLP (1995); and Berry and Haile (2021, Sections 4.2.5 and 5.4).

For the use of characteristics nearby markets (Waldfogel-Fan instruments), see
e.g., Waldfogel (2003); Fan (2013); Williams and Adams (2019); and DellaVigna
and Gentzkow (2019).

For the use of exogenous changes in market structure, see e.g., Miller and
Weinberg (2017).

For the notion of “optimal” instruments, see e.g., BLP (1999); Reynaert and
Verboven (2014); Gandhi and Houde (2020); and Conlon and Gortmaker (2020).
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https://www.aeaweb.org/articles?id=10.1257/aer.89.3.400
https://www.sciencedirect.com/science/article/abs/pii/S0304407613002649
https://www.nber.org/papers/w26375
https://onlinelibrary.wiley.com/doi/abs/10.1111/1756-2171.12352

Appendix:
Semiparametric Discrete Choice
Model (Kaneko & Toyama, 2025)




THE JOURNAL OF INDUSTRIAL ECONOMICS 0022-1821

Volume LXXIII March 2025

DEMAND ESTIMATION WITH FLEXIBLE INCOME
EFFECT: AN APPLICATION TO PASS-THROUGH
AND MERGER ANALYSIS*

SuunE! KAneko™
Yuta Tovama¥

This article proposes a semiparametric discrete choice model that incor-
porates a nonparametric specification for income effects. The model
allows for the flexible estimation of demand curvature, which has signif-
icant implications for pricing and policy analysis in oligopolistic mar-
kets. Our estimation algorithm adopts a method of sieve approxima-
tion with shape restrictions in a nested fixed-point algorithm. Apply-
ing this framework to the Japanese automobile market, we conduct a
pass-through analysis of feebates and merger simulations. Our model
predicts a higher pass-through rate and more significant merger effects
than parametric demand models, highlighting the importance of flexi-
bly estimating demand curvature.

No. 1
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Kaneko & Toyama ( )

e A semiparametric discrete choice model
e Proposing nonparametric sieve approximation of income effect
e Resulting in more accurate estimation of demand curvature, price elasiticity, and
welfare changes.
e Empirical application
e A feebate policy in the Japanese automobile industry®
e High pass-through rate
e More significant merger effects (Toyota & Honda)

®Subsidy for eco-friendly cars.
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umer Demand

e Accurate measurement of consumer demand is critical.

e Price elasticity and substitution patterns are often what firms must consider.
e Decision-making on pricing in oligopolistic markets
e Evaluating the welfare consequences
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Specification for Income Effects

e When estimating consumer demand for differentiated products, it is common to
rely on parametric specifications.

e However, such parametrizing often imposes strict restrictions on the shape of
demand curve.

A semiparametric discrete choice model can adress this concern:

This allows for the flexible estimation of demand curvature and price elasticity
patterns.
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Demand Estimation with Flexible Income Effect

Combine a method of sieve approximation and nested fixed point algorithm.

First, approximate the income effect by nonparametric sieve methods.

Then, their model is closely aligns with the standard parametric framework of BLP.

Second, implement a nested fixed-point algorithm to run sieve GMM estimation.
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Utility Maximization Problem

e Let U(m,j) denote the direct utility function.
e m is a d,, dimensional vector representing the consumption of continuous choice
goods.
e jcJ={0,1,---,J} corresponds to an alternative in the discrete choice decision,
with J products available in the market. The index j = 0 indicates the outside
goods.

e The utility maximization problem is given by

max  U(m,j) (19)
(m.j)ERG™ x T

st. Plm+p; <y,
where P, is a d,, dimensional vector of prices of continuous choice goods, p; is
the price of alternative j, and y; is income.
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Conditional Indirect Utility Function

e Conditional on choice j in the discrete choice, the conditional indirect utility
function is defined as

V(Pr,y = pj,j) = max U(m,j) st.Ppm < y; — pj. (20)
mG]R_’!"

Note that we define pg = 0 as choosing the outside good incurs no costs.

e Assume that the direct utility function satisfies

U(m, j) = v(j) + u(m). (21)

e The conditional indirect utility function can be rewritten as

V(Pn,y —pj,7) =v(J) + V(Pn,y — pj)- (22)
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Income Effect

e Assume that the continuous good is a numeraire, with its price represented by
P"™. Then, we obtain

¥ m Yy—Dpy
P™ y—p;) =
V( 7y p]) U< Pm >)

implying that the utility from numeraire depends on the disposal income y — p;
after choosing alternative j.

e Define the income effect term by
fly—=pj) =V(P™y —p)).
Note that f(y — p;) should be weakly-increasing.
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Conditional Indirect Utility Function

e Letting v;; denote consumer i's utility from a discrete choice good j, we specify
that

’Uz'j:ﬁTXj—l-fj—l—Eij forj=1,---J, (23)
Vi0 = €50- (24)
where X is a vector of observable characteristics of product j, &; represents its
unobservable characteristics, and ¢;; is an |ID idiosyncratic shock that follows the
type | extreme-value distribution.
e Hence, the conditonal indirect utility function of consumer ¢ when choosing j is
given by
fyi—p) +BTXj+& +e  forj=1,---1J,

(25)
J(ysi) + €io for j = 0.

Vij =
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Individual Choice Probability

e Define the choice set of consumer i as

where J; is the total number of products available in market ¢.

e Given the conditional indirect utility V;;; (25), the discrete choice problem is
described as
max V. 27
JeTn gt (27)
and the choice probability for consumer i selecting alternative j is derived as
sijt(Yit) =
Wyir = pje) - exp (f (yie — pje) + BT Xjo + i)
exp (f(yir)) + Soney 1wie > pre) - exp (F (Wir — ie) + BT Xt + &ir)

(28)
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Market Share

o Letting y;; follow the distribution of income G¢(y;¢), the market share is given by

Sjt = /szjtht(yzt) (29)
e Market demand gj; is given by
gjt = Nt X 85

where N; denote the market size.
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Practical Importance of the Flexible Income Effect

e Price Elasiticity: Avoid imposing any predetermined restrictions on how own-price
elasticity varies with price.

e Pass-Through Analysis: Avoid inherent restriction on the demand curvature.

e Merger Analysis: Different curvatures of the demand funtion lead different
simulated merger outcomes even under the same consumer demand with identical

elasticities.
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e The utility function includes the nonparametric function f(y — p) and the linear
parameter 3.

e Employ a sieve approximation for the nonparametric function and incorporate it
into the nested fixed-point (NFP) algorithm.
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Sieve Approximation

e Approximate f(-) by the K-th order Bernstein polynomial, i.e., by a linear
function of the basis function WX (z) = (bK (z), b5 (2), - - - bE(x))T and

coefficients II = (g, 71, - - - m) -

K
f(a) ~ Brc(x) =Y mpby (x) = UF ()T (30)
k=0
where
by (x) = (Ik() (1 —z)fh, (31)

and letting = be normalized to [0, 1].
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Restrictions & Normalization

e Select the Bernstein polynomial as a basis function.

e Recall that f(y — p) is weakly increasing (monotonicity). To incorporate this
restriction within estimation, we impose constraints on the coefficients 1I.

o Under m, < miy1 for all k, the derivative of By (x) (30) satisfies that

K-1
KZ Tep1 — m)by H(z) >0
k=0

for all k, which is the desired monotonicity.

e The level of the income effect cannot be identified. Thus, letting 79 = 0, we

normalize f(z) as f(0) =
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Approximated Model

e Under the sieve approximation above, the market share defined by (28) and (29)
can be rewritten as

Sjt =
1(yse > pjt) - UK (g — pje) 'L+ BT Xt + ¢
/ (yt = Pgt) eXp( Ejlyt p]t) 6 j Ejt) th(yit), (32)
enom.
where the denominator is given by
exp (U7 (yi) " 10)
Ji
+ Z Lyie > pje) - exp (U (yir — pje) "I+ BT Xy + &j¢)
k=1

e Note that there emerges an endogeneity between the product proce pj; and the
unobserved product characteristics §;;.
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Sieve GMM

e Moment Conditions: for b=1,--- , B,

E [&:(0)ps(Xje, Wj)] = 0, (33)

where Xj; is a vector of exogenous variables, Wj; is a vector of IVs, § = (3,1I),
{Po(Xjt, Wii) }o=1,.. B is a sequence of known functions that can approximate any
real-valued square-integrable functions of X;; and Wj; as B — oc.

o GMM Criterion:
£ P (PTP) ~PTe(o)T, (34)

where £(0)7 is a vector that stacks £j;'s. The matrix P = [P, P ® X]| denotes a
matrix of instruments.

69



NFP Algorithm

e Caluculation of the objective function & numerical optimization procedures are as
follows:
e 1. Caluculate the vector of mean utility by applying a contraction-mapping

algorithm.
e 2. Run a linear regression of 6 on X and obtain 3 and the residual Ejt.
e 3. Caluculate the value of the objective function (34).
e 4. Run a nonlinear optimization routine over II. ©

e Inference: Generalized residual bootstrap

®Note that 8 appearing in the mean utility function can be obtained by employing a linear GMM.
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Conclusion

A new framework for a differentiated product demand model with a

nonparametric income effect

e Estimate the semiparametric model with endogeneity by combining the NFP
algorithm and a sieve approximation.

e Monte Carlo simulations suggest significant gains in estimating the nonparametric
term of the income effect by incorporating the shape restriction.

e Applying their framework to Japanese automobile data, they demonstrate the
importance of a flexible income effect specification.
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