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Introduction

e As a general rule, density functions can take any shape. They
are inherently nonparametric and cannot be described by a
finite set of parameters.

e That is, functional and/or distributional specifications relied
on when estimating density functions may be incorrect.
e If we assume that such specifications are “true,” we might

obtain incorrect empirical conclusions.

e Thus, it would be desirable if we develop estimation
procedures without requiring functional and/or distributional
specifications.

e Nonparametric kernel methods achieve such a goal.



e Here we review Sections 17.1-17.8 of Hansen (2022) [9].

e We proceed with a discussion of how to estimate the
probability density function f(z) of a real-valued random
variable X for which we have n IID observations X1, ---X,,.

e We assume that f(x) is continuous.

e The goal is to estimate f(x) either at a single point = or a set

of points in the interior of the support of X.



o Excellent textbooks on nonparametric density estimation
include Silverman (1986) [22] and Scott (1992) [21].
e The following textbooks are often referred to:
e van der Vaart (2000, Chapter 24) [23],
e Pagan and Ullah (1999, Chapter 2) [18], and
e Li and Racine (2007, Chapter 1) [15].
o HAFED SR
o FHIL - AFL (2023, 45 1) [28]
o A (2015, 559 F) [26]
o K (2023, %55 ) [25]
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Idea behind Kernel Density
Estimation




A simple and familiar estimator of f(x) is a histogram.

Divide the range of f(z) into B bins of width w.

Counting the number of observations n; in each bin j, we
obtain the histogram estimator of f(z) for x in the j-th bin:

fla) = 2L (1)

nw

The histogram is the plot of these heights, displayed as
rectangles.
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Figure 17.1: Histogram Estimate of Wage Density for Asian Women



Empirical Distribution Function

e Let us generalize the concept of histogram estimator.

e The empirical distribution function is defined as

F,(z) = %Zl(Xi < z).
i=1

o Let F(z) = / f(x)dx denote the (cumulative) distribution
function. -
e By L.L.N. and C.L.T.,! we obtain
Fu(z) & F(x),
Vi(Fy(z) — F(z)) % Normal(0, F(z)(1 — F(x))).

'We discuss these convergences in Chapter 18 of Hansen (2022) [9].




Naive Estimator

e Since F,(x) includes an indicator function, the empirical
distribution function is not differentiable.

e Instead, let us consider approximate the “derivative” of F),(z).

e Note that, for h — 0, it holds that

F(:c—i—h)—F(m—h)'

fla)~ =

e Replacing F with F},, we obtain the naive estimator? of f(x):

F,(x+h) — F,(x — h)
2h ‘

fulz) =

e Under certain conditions, it can be shown that f,,(z) 2 f(z).

*The Rosenblatt estimator (Rosenblatt, 1956) [20]
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e The naive estimator of ¢(x) using IID observations
X1, cee X100 ~ Normal((), 1)2 3
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3Cited from
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Idea behind Kernel Density Estimation

e The naive estimator can be rewritten as

1 n
()=—> 1(z—h<X;<z+h
fn() 2nh; (z—h< z+h)
1 — X, —x
==k
nhﬁ10< h )’

where kq(+) is given by

o(u) = % A(-1<u<1),

e Replacing ko(-) with some smooth function, we can obtain a
differentiable, smooth estimator of f(z) ...7
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Kernel Density Estimator




Kernel Density Estimator

e The kernel density estimator® of f(x) is given by

o= o (). @

e K(u) is a weighting function known as a kernel function. The

kernel K (u) weights observations based on the distance
between X; and x.

e h > 0 is a scalar known as a bandwidth. The bandwidth h
determines what is meant by “close.”

e The kernel density estimator (2) critically depends on the
bandwidth rather than the kernel function.

*The Parzen-Rosenblatt estimator (Parzen, 1962) [19]

13



Kernel Function

e A kernel function K (u) satisfies

1. 0<K(u)<K <o, (3)
2. K(u) = K(—u), (4)
3 /OO K(w)du = 1, and (5)

o
4. / |u|" K (u)du < oo for all positive integers r.

h (6)
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e Essentially, a kernel function is a bounded PDF which is
symmetric about zero.

e Assumption (6) is not essential for most results but is a
convenient simplification and does not exclude any kernel

functions used in standard empirical practice.

Definition 17.2

e A normalized kernel function K(u) satisfies

/00 w K (u)du = 1.

—00

e The j-th moment of a kernel is defined as

s (K) = / " WK (u)du.

—00
e The order of a kernel v is defined as the order of the first

non-zero moment.
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Examples of Second-Order Kernel

1
Rectangular kernel: K(u) = ——1(|u] < V3
g () = 5 (1l < VB)

1 u?
Gaussian kernel: K(u) = —exp | ——
=g ()
3
Epanechnikov kernel:®> K (u (1 — ) ul < f
p =17 1(lu

Triangular kernel: K(u) = \}6 < |\u[]> 1(Ju| < V6)

1
Quartic (Biweight) kernel: K (u) = 12
35

(- £ 1)

(1 —u?)*1(jul < 1)

Triweight kernel: K (u) =

®Epanechnikov (1969) [5]
16
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Higher-Order Kernel

e Higher-order kernels can be used. See Hansen (2005) [8], and
Section 1.11 of Li and Racine (2007) [15] for details.
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Figure 1.2: Epanechnikov kernels of varying order.
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Bandwidth

e A bandwidth or tuning parameter h > 0 is a real
number used to control the degree of smoothing of a
nonparametric estimator.

e Larger values of h result in smoother estimators.

e Smaller values h result in less smooth estimators.

19



Properties of Kernel Density Estimator

e Invariance to rescaling the kernel function and bandwidth:
The estimator (2) using K (u) and h is equal for any b > 0 to

h
the one using K (%) and 7
e Invariance to data scaling: Suppose that Y = ¢X for some

¢ > 0, which means the (true) density of Y is

fr(y) = fL@

Cc

Letting fx(z) and fy(x) be the estimator (2) using {X;}7_,
and h and the one using {Y;}!" ; = {cX;}!" ; and ch,
respectively, Then, it holds that

20



e The kernel density estimator (2) is non-negative, and

. . — T .
integrates to 1: Letting u = , We obtain

[t = 5> [ (B )

where the second equality holds because

dx = d(X; + hu) = hdu

21



Bias, Variance, MSE




Bias, Variance, MSE

e The mean squared error (MSE) of a generic estimator f ()
can be decomposed as follows:

22



Bias Evaluation

e Since {X;}!" , is an IID sample, it holds that

E[f(z)] =E

Lo (%))

i)
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v—T ) " .
o Letu= o Under certain conditions, we obtain

[ L (55 st [ oo

/ K(u { f!(x)hu + f”() u +0(h2)}du
—fx/_ooKudu—Irf(w)h/::uK(u)du

+ h; (@) /_ Z V2K (u)du + o(h?)

2
= f(x)+0+ %f”(m)m + o(h?)

e Thus, the bias of the kernel density estimator (2) is described
as

bias (f(2)) = B[f()] - f(x) = (@) + o(h?).
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Theorem 17.1

e Letting A denote the neighborhood of z, assume that
f(z) is continuous in N. Then, as h — 0,

E[f(2)] = f(2).
e Assume additionally that f”(x) is continuous in \.

Then, as h — 0,

2

bias (f(a)) = Elf ()] ~ /() = "= " (@) + o(h?).
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Variance Evaluation

e Assume that f(z) is continuous in N'. Then, as h — 0
and nh — oo,

v () = 20 1o (1)

where Ry = [ K%(u)du denotes the roughness of

e The variance of kernel density estimator can be estimated by

the sample analogue of E |:{f(L) — E[f(x)]} or by Kf(h 7)

26



MSE Evaluation

e Combining Theorems 17.1 and 17.2, we obtain the following

result:

e Supppose that f(z) is three-times differentiable.
e Assume that K (-) satisfies (3) and (4).

e Asn — oo, h — 0 and nh — oo,

MSE (f@:)) - T [kaf" ()] + ”’:fi) +o <h4 + nlh> :

where ko = [w?K (u)du and k = [ K%(u)du.

e This result implies that MSE f(a:)) — 0 and that f(z) is a
consistent estimator of f(x). 27



LELCWAYEY

o NA TR, 41HL, MSE ZNZ NI 72T D 72 DI E
RARGEIZDWTIE, Li and Racine (2007, Chapter 1) [15] %
PaIl - AR (2023, 251 %) [28] 25FE L.

o MY 72 3T 2 S H § 2 72 DI EL R EEE R I DOV T
'%, Li and Racine (2007, Appendix A) [15], 1&7K (2021, %5
4 F) [24], FEIL - AK (2023, 55 1) [28] WS - #iJ1l
(2024, 55 F) [27] HFEL .
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IMSE, AIMSE




e The integrated mean squared error (IMSE) is a useful measure

of precision of a kernel density estimator:
[ee]

IMSE = /_Z MSE <f(x)) dz = / E [{f(:c) . f(;c)}ﬂ dz

— 00
e Suppose that f”(z) is uniformly continuous. By similar
arguments as we discuss MSE, it can be shown that as
n — 0o, h = 0, and nh — oo,

. 1 "\ 1,4 4 i
IMSE = 4R(f )+ — h (h + (7)
where R(f") = [ {f"(x)}* dx denotes the roughness of

f(@).
e The leading term in (7) is called the asymptotic integrated
mean squared error (AIMSE).
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Optimal Bandwidth

e Bias-Variance Trade-Off: The first term of AIMSE is
increasing in h, while the second term is decreasing in h.

e For a fixed second-order K (-), we can obtain AIMSE optimal
bandwidth hg by solving the FOC: ©

1

o= () 7 ©

e In reality, AIMSE optimal o depends on the second derivative

of unknown f(z). Thus, researchers need to select a

bandwidth h by certain procedures. ’

®Explanations on the estimation of R(f") can be found in Hall and Marron
(1987) [7] and Jones and Sheather (1991) [12] among others.
"See Sections 17.9-17.11 and 17.15 of Hansen (2022) [9] for further

discussions on bandwidth selection.
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Optimal Kernel

e AIMSE is minimized by the Epanechnikov kernel:?

K@= 2= (1- %) 10 < vB

?Epanechnikov (1969) [5]

e See Section 17.8 of Hansen (2022) [9] for the proof.

e Imai and Okamoto (2024) [10] and Kanaya and Okamoto
(2025) [13] suggest to use other kernel functions for certain

optimality.
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Appendix: Application to Pretesting
for Manipulation




Manipulation Testing

e In (sharp) regression discontinuity designs, researchers would
like to examine whether the identification condition

For each t =0,1,
E[Y;(t)|X; = z] is continuous at z = ¢

is actually fulfilled.

e The fundamental problem: Note that only one out of
E[Y;(0)|X; = z] and E[Y;(1)|X; = x] can be observed. That
is, the above condition cannot be directly examined.

e Instead, researchers often examine certain necessary

conditions (manipulation test).
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Examples of Manipulation Testing

e Testing the continuity of the density of the assignment
variable:®
e McCrary (2008) [16]
e Otsu, Xu and Matsushita (2013) [17]
e Cattaneo, Jansson and Ma (2020) [4]

e Testing other necessary conditions:

o Lee (2008) [14]

e Canay and Kamat (2018) [3]

e Fusejima, Ishihara and Sawada (2024) [6]

e Arai, Hsu, Kitagawa, Mourifie and Wan (2022) [2]

e Let us briefly review the heuristic idea of the local polynomial
density estimator proposed by Cattaneo, Jansson and Ma
(2020) [4].

8Cited from Yanagi, 2024 (a lecture slide).
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Nonparametric Density Estimation

e Flexible (nonparametric) estimation of probability density
function features prominently in empirical work in statistics,
economics, and many other disciplines. Sometimes the density
function is the main object of interest, while in other cases it
is a useful ingredient in forming up two-step nonparametric or
semiparametric procedures.

e Examples: manipulation testing, distributional treatment
effect and counterfactual analysis, instrumental variables
treatment effect specification and heterogeneity analysis, and
common support/overlap testing.

e See Imbens and Rubin (2015) [11] and Abadie and Cattaneo
(2018) [1] for reviews and further references.
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Evaluation Points on the Boundary

e A common problem faced when implementing density
estimators in empirical work is the presence of of evaluation
points that lie on the boundary of the support of the variable
of interest.

e Whenever the density estimator is constructed at or near
boundary points, which may or may not be known by the
researcher, the finite- and large-sample properties of the
estimator are affected.

36



Evaluation Points on the Boundary

e Standard kernel density estimators are invalid at or near
boundary points, while other methods may remain valid but
usually require choosing additional tuning parameters,
transforming the data, a priori knowledge of the boundary
point location, or some other boundary-related specific
information or modification.

e Furthermore, it is usually the case that one type of density
estimator is used for evaluation points at or near the
boundary, while a different type is used for interior points.
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Heuristic ldea

e Whereas other nonparametric density estimators are
constructed by soothing out a histogram-type estimator of the
density, the estimator proposed by Cattaneo, Jansson and Ma
(2020) [4] is constructed by smoothing out the empirical
distribution function using local polynomial techniques.

e Accordingly, their density estimator is constructed using
preliminary tuning-parameter-free and /n-consistent
distribution function estimator (where n denotes the sample
size), implying in particular that the only tuning-parameter
required by our approach is bandwidth associated with the
local polynomial fit at each evaluation point.

38



Statistical Properties

e Asymptotic expansions of the leading bias and variance

e Asymptotic Gaussian distributional approximation and valid
statistical inference

e Consistent standard error estimators

e Consistent data-driven bandwidth selection based on an
asymptotic mean squared error (MSE) expansion

o Note that all these results apply to both interior and boundary
points in a fully automatic and data-driven way, without
requiring boundary specific transformations of the estimator or
of the data, and without employing additional tuning
parameters (beyond the main bandwidth present in any
kernel-based nonparametric method).
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LELCWAYEY

e See Cattaneo, Jansson and Ma (2020) [4] and their

supplementary materials for details.

e Software packages: rddensity, lpdensity
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