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Introduction

• As a general rule, density functions can take any shape. They

are inherently nonparametric and cannot be described by a

finite set of parameters.

• That is, functional and/or distributional specifications relied

on when estimating density functions may be incorrect.

• If we assume that such specifications are “true,” we might

obtain incorrect empirical conclusions.

• Thus, it would be desirable if we develop estimation

procedures without requiring functional and/or distributional

specifications.

• Nonparametric kernel methods achieve such a goal.
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Setup

• Here we review Sections 17.1-17.8 of Hansen (2022) [9].

• We proceed with a discussion of how to estimate the

probability density function f(x) of a real-valued random

variable X for which we have n IID observations X1, · · ·Xn.

• We assume that f(x) is continuous.

• The goal is to estimate f(x) either at a single point x or a set

of points in the interior of the support of X.
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Literature

• Excellent textbooks on nonparametric density estimation

include Silverman (1986) [22] and Scott (1992) [21].

• The following textbooks are often referred to:

• van der Vaart (2000, Chapter 24) [23],

• Pagan and Ullah (1999, Chapter 2) [18], and

• Li and Racine (2007, Chapter 1) [15].

• 日本語の文献：
• 西山・人見 (2023，第 1章) [28]

• 末石 (2015，第 9章) [26]

• 清水 (2023，第 5章) [25]
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Idea behind Kernel Density

Estimation



Histogram

• A simple and familiar estimator of f(x) is a histogram.

• Divide the range of f(x) into B bins of width w.

• Counting the number of observations nj in each bin j, we

obtain the histogram estimator of f(x) for x in the j-th bin:

f̂(x) =
nj

nw
. (1)

• The histogram is the plot of these heights, displayed as

rectangles.
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Empirical Distribution Function

• Let us generalize the concept of histogram estimator.

• The empirical distribution function is defined as

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x).

• Let F (x) =

∫ x

−∞
f(x)dx denote the (cumulative) distribution

function.

• By L.L.N. and C.L.T.,1 we obtain

Fn(x)
p−→ F (x),

√
n(Fn(x)− F (x))

d−→ Normal(0, F (x)(1− F (x))).
1We discuss these convergences in Chapter 18 of Hansen (2022) [9].
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Naive Estimator

• Since Fn(x) includes an indicator function, the empirical

distribution function is not differentiable.

• Instead, let us consider approximate the “derivative” of Fn(x).

• Note that, for h → 0, it holds that

f(x) ≈ F (x+ h)− F (x− h)

2h
.

• Replacing F with Fn, we obtain the naive estimator2 of f(x):

fn(x) =
Fn(x+ h)− Fn(x− h)

2h
.

• Under certain conditions, it can be shown that fn(x)
p−→ f(x).

2The Rosenblatt estimator (Rosenblatt, 1956) [20]
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• The naive estimator of ϕ(x) using IID observations

X1, · · ·X100 ∼ Normal(0, 1): 3

3Cited from the lecture note 01 by N. Sueishi.
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Idea behind Kernel Density Estimation

• The naive estimator can be rewritten as

fn(x) =
1

2nh

n∑
i=1

1(x− h ≤ Xi ≤ x+ h)

=
1

nh

n∑
i=1

k0

(
Xi − x

h

)
,

where k0(·) is given by

k0(u) =
1

2
· 1(−1 ≤ u ≤ 1).

• Replacing k0(·) with some smooth function, we can obtain a

differentiable, smooth estimator of f(x) ...?
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Kernel Density Estimator

• The kernel density estimator4 of f(x) is given by

f̂(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
. (2)

• K(u) is a weighting function known as a kernel function. The

kernel K(u) weights observations based on the distance

between Xi and x.

• h > 0 is a scalar known as a bandwidth. The bandwidth h

determines what is meant by “close.”

• The kernel density estimator (2) critically depends on the

bandwidth rather than the kernel function.

4The Parzen-Rosenblatt estimator (Parzen, 1962) [19]
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Kernel Function

Definition 17.1

• A kernel function K(u) satisfies

1. 0 ≤ K(u) ≤ K̄ < ∞, (3)

2. K(u) = K(−u), (4)

3.

∫ ∞

−∞
K(u)du = 1, and (5)

4.

∫ ∞

−∞
|u|rK(u)du < ∞ for all positive integers r.

(6)
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• Essentially, a kernel function is a bounded PDF which is

symmetric about zero.

• Assumption (6) is not essential for most results but is a

convenient simplification and does not exclude any kernel

functions used in standard empirical practice.

Definition 17.2

• A normalized kernel function K(u) satisfies∫ ∞

−∞
u2K(u)du = 1.

• The j-th moment of a kernel is defined as

κj(K) =

∫ ∞

−∞
ujK(u)du.

• The order of a kernel ν is defined as the order of the first

non-zero moment.
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Examples of Second-Order Kernel

• Rectangular kernel: K(u) =
1

2
√
3
1(|u| ≤

√
3)

• Gaussian kernel: K(u) =
1√
2π

exp

(
−u2

2

)
• Epanechnikov kernel:5 K(u) =

3

4
√
5

(
1− u2

5

)
1(|u| ≤

√
5)

• Triangular kernel: K(u) =
1√
6

(
1− |u|√

6

)
1(|u| ≤

√
6)

• Quartic (Biweight) kernel: K(u) =
15

16
(1− u2)21(|u| ≤ 1)

• Triweight kernel: K(u) =
35

32
(1− u2)31(|u| ≤ 1)

5Epanechnikov (1969) [5]
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Higher-Order Kernel

• Higher-order kernels can be used. See Hansen (2005) [8], and

Section 1.11 of Li and Racine (2007) [15] for details.
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Bandwidth

Definition 17.3

• A bandwidth or tuning parameter h > 0 is a real

number used to control the degree of smoothing of a

nonparametric estimator.

• Larger values of h result in smoother estimators.

• Smaller values h result in less smooth estimators.
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Properties of Kernel Density Estimator

• Invariance to rescaling the kernel function and bandwidth:

The estimator (2) using K(u) and h is equal for any b > 0 to

the one using K
(u
b

)
and

h

b
.

• Invariance to data scaling: Suppose that Y = cX for some

c > 0, which means the (true) density of Y is

fY (y) =
fX(yc )

c
.

Letting f̂X(x) and f̂Y (x) be the estimator (2) using {Xi}ni=1

and h and the one using {Yi}ni=1 = {cXi}ni=1 and ch,

respectively, Then, it holds that

f̂Y (y) =
f̂X(yc )

c
.
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• The kernel density estimator (2) is non-negative, and

integrates to 1: Letting u =
Xi − x

h
, we obtain

∫ ∞

−∞
f̂(x)dx =

1

nh

n∑
i=1

∫ ∞

−∞
K

(
Xi − x

h

)
dx

=
1

n

n∑
i=1

∫ ∞

−∞
K(u)du = 1.

where the second equality holds because

dx = d(Xi + hu) = hdu
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Bias, Variance, MSE

• The mean squared error (MSE) of a generic estimator f̂(x)

can be decomposed as follows:

MSE
(
f̂(x)

)
≡ E

[
{f̂(x)− f(x)}2

]
= E

[
{f̂(x)− E[f̂(x)] + E[f̂(x)]− f(x)}2

]
= E

[
{f̂(x)− E[f̂(x)]}2

]
+
[
E[f̂(x)]− f(x)

]2
≡ var

(
f̂(x)

)
+

[
bias

(
f̂(x)

)]2
.
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Bias Evaluation

• Since {Xi}ni=1 is an IID sample, it holds that

E[f̂(x)] = E

[
1

nh

n∑
i=1

K

(
Xi − x

h

)]

= E
[
1

h
K

(
X − x

h

)]
.

• By definition,

E
[
1

h
K

(
X − x

h

)]
=

∫ ∞

−∞

1

h
K

(
v − x

h

)
f(v)dv.
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• Let u =
v − x

h
. Under certain conditions, we obtain∫ ∞

−∞

1

h
K

(
v − x

h

)
f(v)dv =

∫ ∞

−∞
K(u)f(x+ hu)du

=

∫ ∞

−∞
K(u)

{
f(x) + f ′(x)hu+

1

2
f ′′(x)h2u2 + o(h2)

}
du

= f(x)

∫ ∞

−∞
K(u)du+ f ′(x)h

∫ ∞

−∞
uK(u)du

+
h2

2
f ′′(x)

∫ ∞

−∞
u2K(u)du+ o(h2)

= f(x) + 0 +
h2

2
f ′′(x)κ2 + o(h2)

• Thus, the bias of the kernel density estimator (2) is described

as

bias
(
f̂(x)

)
≡ E[f̂(x)]− f(x) =

h2

2
f ′′(x)κ2 + o(h2).
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Theorem 17.1

• Letting N denote the neighborhood of x, assume that

f(x) is continuous in N . Then, as h → 0,

E[f̂(x)] → f(x).

• Assume additionally that f ′′(x) is continuous in N .

Then, as h → 0,

bias
(
f̂(x)

)
≡ E[f̂(x)]− f(x) =

h2

2
f ′′(x)κ2 + o(h2).
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Variance Evaluation

Theorem 17.2

• Assume that f(x) is continuous in N . Then, as h → 0

and nh → ∞,

var
(
f̂(x)

)
=

RKf(x)

nh
+ o

(
1

nh

)
where RK =

∫
K2(u)du denotes the roughness of

K(u).

• The variance of kernel density estimator can be estimated by

the sample analogue of E
[
{f̂(x)− E[f̂(x)]}2

]
, or by

κf̂(x)

nh
.
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MSE Evaluation

• Combining Theorems 17.1 and 17.2, we obtain the following

result:

Theorem 1.1 of Li and Racine (2007) [15]

• Supppose that f(x) is three-times differentiable.

• Assume that K(·) satisfies (3) and (4).

• As n → ∞, h → 0 and nh → ∞,

MSE
(
f̂(x)

)
=

h4

4

[
κ2f

′′(x)
]2

+
κf(x)

nh
+ o

(
h4 +

1

nh

)
,

where κ2 =
∫
u2K(u)du and κ =

∫
K2(u)du.

• This result implies that MSE
(
f̂(x)

)
→ 0 and that f̂(x) is a

consistent estimator of f(x). 27



Take Away

• バイアス，分散，MSEそれぞれの漸近的な評価のために必要
な仮定については，Li and Racine (2007, Chapter 1) [15] や
西山・人見 (2023，第 1章) [28] が詳しい．

• 漸近的な評価を導出するために必要な定理や補題について
は，Li and Racine (2007, Appendix A) [15]，清水 (2021，第
4章) [24]，西山・人見 (2023，第 1章) [28]や瀬戸・細川
(2024，第 5章) [27] が詳しい．
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IMSE, AIMSE

• The integrated mean squared error (IMSE) is a useful measure

of precision of a kernel density estimator:

IMSE =

∫ ∞

−∞
MSE

(
f̂(x)

)
dx =

∫ ∞

−∞
E
[
{f̂(x)− f(x)}2

]
dx

• Suppose that f ′′(x) is uniformly continuous. By similar

arguments as we discuss MSE, it can be shown that as

n → ∞, h → 0, and nh → ∞,

IMSE =
1

4
R(f ′′)h4 +

κ

nh
+ o

(
h4 +

1

nh

)
, (7)

where R(f ′′) =
∫
{f ′′(x)}2 dx denotes the roughness of

f ′′(x).

• The leading term in (7) is called the asymptotic integrated

mean squared error (AIMSE).
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Optimal Bandwidth

• Bias-Variance Trade-Off: The first term of AIMSE is

increasing in h, while the second term is decreasing in h.

• For a fixed second-order K(·), we can obtain AIMSE optimal

bandwidth h0 by solving the FOC: 6

h0 =

(
RK

R(f ′′)

) 1
5

n− 1
5 . (8)

• In reality, AIMSE optimal h0 depends on the second derivative

of unknown f(x). Thus, researchers need to select a

bandwidth h by certain procedures. 7

6Explanations on the estimation of R(f ′′) can be found in Hall and Marron

(1987) [7] and Jones and Sheather (1991) [12] among others.
7See Sections 17.9-17.11 and 17.15 of Hansen (2022) [9] for further

discussions on bandwidth selection.
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Optimal Kernel

Theorem 17.4

• AIMSE is minimized by the Epanechnikov kernel:a

K(u) =
3

4
√
5

(
1− u2

5

)
1(|u| ≤

√
5)

aEpanechnikov (1969) [5]

• See Section 17.8 of Hansen (2022) [9] for the proof.

• Imai and Okamoto (2024) [10] and Kanaya and Okamoto

(2025) [13] suggest to use other kernel functions for certain

optimality.
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for Manipulation



Manipulation Testing

• In (sharp) regression discontinuity designs, researchers would

like to examine whether the identification condition

For each t = 0, 1,

E[Yi(t)|Xi = x] is continuous at x = c

is actually fulfilled.

• The fundamental problem: Note that only one out of

E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x] can be observed. That

is, the above condition cannot be directly examined.

• Instead, researchers often examine certain necessary

conditions (manipulation test).
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Examples of Manipulation Testing

• Testing the continuity of the density of the assignment
variable:8

• McCrary (2008) [16]

• Otsu, Xu and Matsushita (2013) [17]

• Cattaneo, Jansson and Ma (2020) [4]

• Testing other necessary conditions:

• Lee (2008) [14]

• Canay and Kamat (2018) [3]

• Fusejima, Ishihara and Sawada (2024) [6]

• Arai, Hsu, Kitagawa, Mourifie and Wan (2022) [2]

• Let us briefly review the heuristic idea of the local polynomial

density estimator proposed by Cattaneo, Jansson and Ma

(2020) [4].
8Cited from Yanagi, 2024 (a lecture slide).
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Cattaneo, Jansson and Ma (2020, JASA)

www.tandfonline.com/doi/full/10.1080/01621459.2019.1635480
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Nonparametric Density Estimation

• Flexible (nonparametric) estimation of probability density

function features prominently in empirical work in statistics,

economics, and many other disciplines. Sometimes the density

function is the main object of interest, while in other cases it

is a useful ingredient in forming up two-step nonparametric or

semiparametric procedures.

• Examples: manipulation testing, distributional treatment

effect and counterfactual analysis, instrumental variables

treatment effect specification and heterogeneity analysis, and

common support/overlap testing.

• See Imbens and Rubin (2015) [11] and Abadie and Cattaneo

(2018) [1] for reviews and further references.
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Evaluation Points on the Boundary

• A common problem faced when implementing density

estimators in empirical work is the presence of of evaluation

points that lie on the boundary of the support of the variable

of interest.

• Whenever the density estimator is constructed at or near

boundary points, which may or may not be known by the

researcher, the finite- and large-sample properties of the

estimator are affected.
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Evaluation Points on the Boundary

• Standard kernel density estimators are invalid at or near

boundary points, while other methods may remain valid but

usually require choosing additional tuning parameters,

transforming the data, a priori knowledge of the boundary

point location, or some other boundary-related specific

information or modification.

• Furthermore, it is usually the case that one type of density

estimator is used for evaluation points at or near the

boundary, while a different type is used for interior points.
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Heuristic Idea

• Whereas other nonparametric density estimators are

constructed by soothing out a histogram-type estimator of the

density, the estimator proposed by Cattaneo, Jansson and Ma

(2020) [4] is constructed by smoothing out the empirical

distribution function using local polynomial techniques.

• Accordingly, their density estimator is constructed using

preliminary tuning-parameter-free and
√
n-consistent

distribution function estimator (where n denotes the sample

size), implying in particular that the only tuning-parameter

required by our approach is bandwidth associated with the

local polynomial fit at each evaluation point.
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Statistical Properties

• Asymptotic expansions of the leading bias and variance

• Asymptotic Gaussian distributional approximation and valid

statistical inference

• Consistent standard error estimators

• Consistent data-driven bandwidth selection based on an

asymptotic mean squared error (MSE) expansion

• Note that all these results apply to both interior and boundary

points in a fully automatic and data-driven way, without

requiring boundary specific transformations of the estimator or

of the data, and without employing additional tuning

parameters (beyond the main bandwidth present in any

kernel-based nonparametric method).
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Take Away

• See Cattaneo, Jansson and Ma (2020) [4] and their

supplementary materials for details.

• Software packages: rddensity, lpdensity
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