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Parametric Censored Models



Type-1 Tobit Model

• Consider the following latent variable model:

Y ⋆
i = XT

i β + ϵi, i = 1, · · ·n,

where Xi ∈ Rq is an explanatory vector, β is a q × 1 vector of

coefficients, and ϵi is a mean zero disturbance term.

• Y ⋆
i is a latent variable, which we cannot observe. Instead, we

observe

Yi = Y ⋆
i 1(Y

⋆
i > 0)

= max{XT
i β + ϵi, 0}.

• Note that the “cutoff” is set equal to 0 without loss of

generality. That is, we expect that Yi (ϵi) is censored at 0

(resp. −XT
i β).
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Parametric Approach

• Popular parametric approaches include MLE and Heckit. 1

• These approaches demand the following distributional

assumption:

ϵi|Xi ∼ Normal(0, σ2).

Since Y ⋆
i is censored, for example, by top coding, the

distribution of Y ⋆
i cannot be identified without this

assumption.

• In other words, these parametric approaches do not allow for

the heteroscedasticity of ϵi (Arabmazar and Schmidt 1981).

1Amemiya (1984)：Tobitモデルのサーベイ論文；Amemiya (1985)：教科書．
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Semiparametric Type-1 Tobit

Models



Semiparametric Type-1 Tobit Models

• We introduce the following semiparametric type-1 Tobit

model:

Y ⋆
i = XT

i β + ϵi,

Yi = Y ⋆
i 1(Y

⋆
i > 0).

• For identifying the moments of Y ⋆
i , we need additional

assumptions.

• Powell (1984) proposes to assume that med(ϵi|Xi) = 0.

• Chen and Khan (2000) proposes a estimation procedure which

requires weaker assumptions for identification than Powell

(1984).
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Semiparametric Censored

Regression Models



Powell (1984): CLAD

• Consider the semiparametric type-1 Tobit model:

Y ⋆
i = XT

i β + ϵi,

Yi = Y ⋆
i 1(Y

⋆
i > 0) = max{Y ⋆

i , 0}.

• Assume that med(ϵi|Xi) = 0. Noting that the “monotonicity”

of median 2, we obtain

med(Yi|Xi) = max{med(Y ⋆
i |Xi), 0} = max{XT

i β, 0}, which
implies that the above model can be rewritten as

Yi = max{XT
i β, 0}+ ϵi,

med(ϵi|Xi) = 0.

2maxと medの順番を入れ替えても大丈夫ということ．maxでなくても，単調
変換なら入れ替え可．
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• Powell (1984) proposes the following censored least absolute

deviations estimator:

β̂clad = argmin
β

1

n

n∑
i=1

|Yi −max{XT
i β, 0}|

= argmin
β

1

n

n∑
i=1

1(XT
i β > 0)|Yi −XT

i β|.

• Computation is sometimes complex 3. See Buchinsky (1994);

Khan and Powell (2001).

• Powell (1984) establishes the
√
n-consistency and asy.

normality:
√
n(β̂clad − β)

d−→ Normal(0, V −1
clad),

where

Vclad = 4f2(0)E[1(XT
i β > 0)XiX

T
i ]

and f(0) is the density of ϵi at the origin.
3β が 2つの役割をもつことに起因する：データの選択，係数の値の決定． 6



• Variance estimation can be implemented as follows.

• Assume that ϵi is independent of Xi.

• Note that

f(0) = lim
h→0

P(0 ≤ ϵi < h)

= lim
h→0

P(0 ≤ ϵi < h|XT
i β > 0).

• Powell suggests to estimate f(0) by

f̂(0) =
1(XT

i β̂clad > 0)1(0 ≤ ϵ̂i < h)

h
∑n

i=1 1(X
T
i β̂clad > 0)

.
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Extension 1: Estimation of f(0)

• Horowitz and Neumann (1987) propose an alternative

estimator of f(0).

• To estimate f(0), they use data with XT
i β̂clad ∈

[
−h

2 ,
h
2

]
.

• Their estimator is given by

f̂(0) =

∑n
i=1 1

(
−h

2
≤ ϵ̂i ≤ h

2

)
1 (Yi > 0)

h

[∑n
i=1 1(XT

i β̂clad > h
2
) + 1

2

(
1 +

XT
i

β̂clad
h
2

)
1
(
−h

2
< XT

i β̂clad ≤ h
2

)]
.

• Hall and Horowitz (1990) suggest to replace the indicator

function by a kernel function.
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Extension 2: Newey and Powell (1990)

• Newey and Powell (1990) modify the objective function above:

β̂np = argmin
β

n∑
i=1

wi|Yi −max{XT
i β, 0}|.

• They show that the optimal weight is wi = 2f(0|Xi). The

asy. variance is {4E[1(XT
i β > 0)f2(0|Xi)XiX

T
i ]}−1.

• Their estimator achieves the semiparametric efficiency bound

for the censored regression model under med(ϵi|Xi) = 0.

• If ϵi is independent of Xi, then f(0|Xi) = f(0), which implies

that ˆbetanp = β̂clad.
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Extension 3: Other Approaches

• Powell (1986): Additionally assume the symmetry assumption.

• Newey (1991): GMM-based estimation. Assume the

symmetry assumption for efficiency.

• Honore and Powell (1994): Identically CLAD; Identically

censored least squares.
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Nonparametric Heteroscedasticity



Problems Arising with Powell’s CLAD

• Recall that Powell’s CLAD requires med(ϵi|Xi) = 0, which

can be interpreted as restrictive 4.

• Avar(β̂clad) is represented using E[1(XT
i β > 0)XiX

T
i ]

−1,

which cannot be defined if E[1(XT
i β > 0)XiX

T
i ] is not of full

rank. This problem often arises under heavy censoring (i.e.,

when XT
i β is negative with high probability).

4とはいえ，中央値の識別は，期待値の識別よりもはるかに緩い条件で済むの
で，CLADやそれを拡張した打ち切りデータに対する分位点回帰をやろうとい
う話になる．
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Chen and Khan (2000)

• Chen and Khan (2000) consider estimation procedures for

heteroscedastic censored linear regression models.

• Their approach requires weaker identification conditions than

Powell’s CLAD.

• They also allow for various degrees of censoring.

• Their main idea is that they model the error term as the

product of a homoscedastic error and a scale function of Xi

that can be estimated using kernel methods.
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• They assume that

ϵi = σ(Xi)vi,

P(vi ≤ λ|Xi) ≡ P(vi ≤ λ) for any λ ∈ R, Xi a.s.,

E(vi) = 0,Var(vi) = 1.

5

• Recalling that Yi = max{XT
i β + ϵi, 0}, we obtain

For any α ∈ (0, 1),

qα(Xi) = max{XT
i β + cασ(Xi), 0},

where

qα(·) denotes the α-th quantile of Yi given Xi,

cα denotes the α-th quantile from the (unknown) distribution of vi.

• Thus, for any qαj (Xi) > 0 for two distinct α1 ̸= α2, we have

qαj (Xi) = XT
i β + cαjσ(Xi) for j = 1, 2.

5このように ϵi を定めると，正規分布を許容できなくなってしまう（heteroscedasticity を守るならば）． 13



Chen and Khan (2000): Estimation

• Chen and Khan (2000) propose two estimators of β. One is

assuming that vi has a known parametric distribution. The

other does not require such assumptions.

• Here we focus on the latter one.

• Notations:

q̄α(·) =
qα2(·) + qα1(·)

2
,

∆qα(·) = qα2(·)− qα1(·),

c̄ =
cα2 + cα1

2
,

∆c = cα2 − cα1 ,

γ1 =
c̄

∆c
: we treat γ1 as a nuisance parameter.

• From qαj (Xi) = XT
i β + cαjσ(Xi), one can show that

q̄α(Xi) = XT
i β + γ1∆qα(Xi) for j = 1, 2. 14



• Chen and Khan (2000)’s estimation procedures include the

following steps:

• 1st step: Estimate qαj (·) nonparametrically. Let q̂αj (·) denote
the nonparametric estimator of qαj (·).

• 2nd step: Regress ˆ̄qα(·) on Xi and ∆q̂α(·).
• That is, the estimators of β and γ1 are given by minimizing

(w.r.t. β and γ1)

1

n

n∑
i=1

τ(Xi)w (q̂α1(Xi)) [ˆ̄q(Xi)−XT
i β − γ1∆q̂α(Xi)]

2,

where w(·) is a smoothing weight function 6, τ(·) is a
trimming function having compact support.

• Under certain regularity conditions, their estimator β̂ have the

parametric
√
n rate of convergence, and is distributed

asymptotically normally.
61(q̂α1(Xi) > 0)のかわりのようなもの．
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Extension: Cosslett (2004)

• Cosslett (2004) proposes asymptotically efficient

likelihood-based semiparametric estimators for censored and

truncated regression models.

• See the paper for details.
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The Univariate Kaplan-Meier CDF

Estimator



Kaplan and Meier (1958): Product-Limit Estimator

• There exists a class of semiparametric estimators that employ

the so-called Kaplan-Meier estimator of a CDF in the presence

of censored data.

• Setup: Consider the following estimands:

CDF: F (·), or

Survival function: S(·) = 1− F (·).

• Let {Yi}ni=1 be the random sample of interest drawn from

F (·).
• Let {Li}ni=1 be random/fixed censoring variables, that are

independent of {Yi}ni=1.

• Define Zi = min{Yi, Li}, and δi = 1(Yi ≤ Li). Suppose that

we observe only Zi and δi. By construction, we cannot

observe the exact value of Yi if δi = 0.
17



cont’d

• Define the ascending points c0, c1, · · · , cm at which the CDF

F (·) or S(·) is to be evaluated.

• Define Ij = 1(Y > cj).

• Noting that c’s are ascending and so that Ij−1 = 1 if Ij = 1,

we obtain conditional survival probability:

P(Ij = 1|Ij−1 = 1) =
P(Ij = 1)

P(Ij−1 = 1)
= 1− P(cj−1 < Y ≤ cj)

P(Y > cj−1)
.

• By choosing c0 small enough (say, below the smallest

observation in the data), we can always ensure that

P(I0 = 1) = 1. That is, all items survive initially.

18



Estimation: In the Case of No Censoring

• We can estimate P(Ij = 1|Ij−1 = 1) by the iteration of

P̃(Ij = 1|Ij−1 = 1) =
P̃(Ij = 1)

P̃(Ij−1 = 1)
=

# of Yi > cj
# of Yi > cj−1

= 1− # of cj−1 < Yi ≤ cj
# of Yi > cj−1

,

which leads to the following estimator of survival probability:

P̃(Ij = 1) =

j∏
s=1

P̃(Is = 1|Is−1 = 1)

=
# of Yi > cj
# of Yi > c0

=
# of Yi > cj

n
= 1− F̂n(cj)

where F̂n(cj) =
# of Yi ≤ cj

n
is the empirical CDF 7.

7テキストでは s = 2から計算することになっているが，このスライドでは，
c0, · · · という点の取り方に consistentな表記に統一した．
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Estimation: With the Presence of Censoring

• Similar estimation procedures to above can be implemented:

Iteration of

P̂(Ij = 1|Ij−1 = 1) = 1− # of uncensored cj−1 < Yi ≤ cj
# of Yi > cj−1

leads to the following estimator of survival probability:

Ŝ(cj) = P̂(Ij = 1) =

j∏
s=1

P̂(Is = 1|Is−1 = 1).

• The estimator of CDF is given by F̂ (cj) = 1− Ŝ(cj)
8.

8Errataをみると，s = 2から計算することになっているが，このスライドで
は，c0, · · · という点の取り方に consistentな表記に統一した．
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The Multivariate Kaplan-Meier CDF

Estimator



Nonparametric Censored Regression
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