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Parametric Censored Models



Type-1 Tobit Model

e Consider the following latent variable model:
* T .
}/z_XzB—'_EZ? Z—].,""I’l,
where X; € RY is an explanatory vector, 3 is a ¢ X 1 vector of

coefficients, and ¢; is a mean zero disturbance term.

e Y is a latent variable, which we cannot observe. Instead, we

observe
Y, =Y 1(Yy > 0)
= max{X7 3 +¢;, 0}.
e Note that the “cutoff” is set equal to 0 without loss of

generality. That is, we expect that Y; (¢;) is censored at 0
(resp. —X71D).



Parametric Approach

e Popular parametric approaches include MLE and Heckit. !

e These approaches demand the following distributional

assumption:
€| X; ~ Normal(0, o2).

Since Y;* is censored, for example, by top coding, the

distribution of Y;* cannot be identified without this

assumption.

e In other words, these parametric approaches do not allow for
the heteroscedasticity of ¢; (Arabmazar and Schmidt 1981).

'Amemiya (1984) : Tobit E 7LD P — A X ; Amemiya (1985) : Bk},
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Semiparametric Type-1 Tobit Models

e We introduce the following semiparametric type-1 Tobit
model:

}/;* = XZTB + €,
Y; = Y1V > 0).

e For identifying the moments of Y;*, we need additional
assumptions.

e Powell (1984) proposes to assume that med(¢;| X;) = 0.

e Chen and Khan (2000) proposes a estimation procedure which
requires weaker assumptions for identification than Powell
(1984).



Semiparametric Censored
Regression Models



Powell (1984): CLAD

e Consider the semiparametric type-1 Tobit model:

Y;* = XzTB + €,
Yi = Y71V > 0) = max{Y7,0}.

e Assume that med(¢;|X;) = 0. Noting that the “monotonicity”
of median 2, we obtain
med(Y;| X;) = max{med(Y;*|X;),0} = max{X] 3,0}, which
implies that the above model can be rewritten as

Y; = max{X{ 8,0} + ¢,
med(ei|XZ-) =0.
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e Powell (1984) proposes the following censored least absolute

deviations estimator:
n

A 1
Betaq = avgmin > | |V; — max{X[ 5, 0}|
i=1
n

1
= in— Y LX]B>0)Y; - X]Bl
afgm;“n; (X{'8>0)Y: - X[ 8]
e Computation is sometimes complex 3. See Buchinsky (1994);
Khan and Powell (2001).
e Powell (1984) establishes the \/n-consistency and asy.
normality:

Vi(Betad — B) % Normal(0, V3.1,
where
Vetad = 412 (0 E[L(X] 8 > 0)X; X[
_and f(0) is the density of ¢; at the origin.
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Variance estimation can be implemented as follows.

Assume that ¢; is independent of X;.

Note that
f(0)=1lim P(0 < ¢ < h)
h—0
= 1lim P(0 < ¢; < h|X] 5 > 0).
h—0
Powell suggests to estimate f(0) by

f(O) _ 1(XZ'TBclad > 0)1(0 <& < h)
hZf?:l 1(X,L'TBclad > 0) '




: Estimation of f(0)

Horowitz and Neumann (1987) propose an alternative
estimator of f(0).

To estimate f(0), they use data with XiTBClad € [—%7 %]
Their estimator is given by

srat(-<a<s)imi>o

n T3 h 1 X Belaa h T4 h
h o1 WXy Betad > 3) + 3 1+ =5 1(—§<X71 ﬂcla,dgj) .
2

F0) =

Hall and Horowitz (1990) suggest to replace the indicator
function by a kernel function.



: Newey and Powell (1990)

e Newey and Powell (1990) modify the objective function above:

n
Bp = arg rnﬁlnE:wAYZ — max{ X/ 3,0}.
i=1

e They show that the optimal weight is w; = 2f(0|X;). The
asy. variance is {4E[1(X] 3 > 0) f2(0|X;) X; X[ ]}~ L.

e Their estimator achieves the semiparametric efficiency bound
for the censored regression model under med(¢;| X;) = 0.

o If ¢ is independent of X;, then f(0|X;) = f(0), which implies
that betany = Beiad-



: Other Approaches

e Powell (1986): Additionally assume the symmetry assumption.

e Newey (1991): GMM-based estimation. Assume the
symmetry assumption for efficiency.

e Honore and Powell (1994): Identically CLAD; Identically

censored least squares.
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Nonparametric Heteroscedasticity




Problems Arising with Powell’s CLAD

e Recall that Powell's CLAD requires med(e;|X;) = 0, which
can be interpreted as restrictive #

o Avar(Beaq) is represented using E[1(X7 3 > 0)X; XT]~
which cannot be defined if E[1(X 8 > 0)X;X[] is not of full
rank. This problem often arises under heavy censoring (i.e.,
when Xl.Tﬁ is negative with high probability).

fridnz, HRMEOFEANE, JHRHEOFR X D D12 2R OEETHEDD
T, CLAD RZNEIRR L 4T B0 7= 23 2 0 ki z 5 5 & v
IEEICI B,
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Chen and Khan (2000)

e Chen and Khan (2000) consider estimation procedures for
heteroscedastic censored linear regression models.

e Their approach requires weaker identification conditions than
Powell's CLAD.

e They also allow for various degrees of censoring.

e Their main idea is that they model the error term as the
product of a homoscedastic error and a scale function of X;
that can be estimated using kernel methods.
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e They assume that
€ = o(X;)v;,
P(v; < A X;) =P(v; < A) for any A € R, X a.s.,
E(vi) = 0, Var(v;) = 1.
5
e Recalling that V; = max{X7 3 + ¢;,0}, we obtain
For any a € (0, 1),
Ga(X;) = max{X] B + cac(X;), 0},
where
¢a(+) denotes the a-th quantile of Y; given X,

o denotes the a-th quantile from the (unknown) distribution of v;.

e Thus, for any Qo (X;) > 0 for two distinct a; # a2, we have

an.(Xi) = XlTﬁ + CajO'(XZ‘> for j =1, 2.

Scorsic e BEDBY, FMOEHATERA>TLES (heteroscedasticity %5572 512) . 13



Chen and Khan (2000): Estimation

e Chen and Khan (2000) propose two estimators of 5. One is
assuming that v; has a known parametric distribution. The
other does not require such assumptions.

e Here we focus on the latter one.

e Notations:
_ Qoo (*) + Qo (-
o) = B0 )
Aqa(') = qaz(') - qa1(')>
Cas + Caq

C

5
Ac = cqy — Cays
Y1 = é: we treat 1 as a nuisance parameter.
e From qu,(X;) = X' B+ ca,;0(X;), one can show that
1o(Xi) = X[ B4+ 1Aqu(X;) for j =1,2. 1



e Chen and Khan (2000)’s estimation procedures include the
following steps:

e 1st step: Estimate gq,(-) nonparametrically. Let g, () denote
the nonparametric estimator of gq(-).

e 2nd step: Regress ¢, () on X; and Adu(+).

e That is, the estimators of 5 and ~; are given by minimizing
(w.r.t. 5 and 1)

*Ej w (day (X2)) [2(X0) = X[ B — 11AGa (X)),

where w(-) is a smoothing weight function °, 7(-) is a
trimming function having compact support.

e Under certain regularity conditions, their estimator B have the
parametric y/n rate of convergence, and is distributed

asymptotically normally.
61(Ga, (Xi) > )@#bb@ij&%@



: Cosslett (2004)

e Cosslett (2004) proposes asymptotically efficient
likelihood-based semiparametric estimators for censored and

truncated regression models.

e See the paper for details.
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The Univariate Kaplan-Meier CDF
Estimator




Kaplan and Meier (1958): Product-Limit Estimator

e There exists a class of semiparametric estimators that employ
the so-called Kaplan-Meier estimator of a CDF in the presence
of censored data.

e Setup: Consider the following estimands:

CDF: F(-), or
Survival function: S(-) =1 — F(-).

o Let {Y;}" | be the random sample of interest drawn from

e Let {L;}? | be random/fixed censoring variables, that are
independent of {Y;}7 ;.

e Define Z; = min{Y;, L;}, and §; = 1(Y; < L;). Suppose that
we observe only Z; and ;. By construction, we cannot

observe the exact value of Y; if §; = 0.
17



e Define the ascending points ¢y, c1, - , ¢, at which the CDF
F(-) or S(-) is to be evaluated.

o Define I; = 1(Y > ¢;).
e Noting that ¢'s are ascending and so that I;,_; = 1if I; =1,
we obtain conditional survival probability:
IP)(I]' = 1) —1_ P(ijl <Y < Cj)
P(Ij_l = 1) P(Y > Cj_l)

Pl =111 =1) =
e By choosing ¢y small enough (say, below the smallest

observation in the data), we can always ensure that
P(Iy = 1) = 1. That is, all items survive initially.
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Estimation: In the Case of No Censoring

e We can estimate IP(I; = 1|/;_1 = 1) by the iteration of

. P(I; =1 fY; > cj

Pl =11 =1) = = L=l _ Foiki>g

P(ijl = 1) # of Y; > Cj—1
#Oij_l <Y; SCJ'
# of Y; > Cj—1 '

which leads to the following estimator of survival probability:

=1

P(I; =1) =[P, =1L,y = 1)

s=1
_ # of Y; > ¢ :#oni>cj :1—F"(c-)
# of Y; > ¢ n J
. fY;, <c;
where F™(c;) = #of¥ise is the empirical CDF 7.
n

TFERPTIE s =203 BT 22210 oTWED, ZDRAF A FTI3,
co, - LW EDOHLD J51Z consistent 72 FKFITH— L 7.
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Estimation: With the Presence of Censoring

e Similar estimation procedures to above can be implemented:
Iteration of

A # of uncensored c;_1 < Y; <¢;
P(I;=1/[;,_1=1)=1—
(=11 =1) # of Vi > cjq

leads to the following estimator of survival probability:
S(ej) =P(I; = 1) = [[P(Ls = 1|I;-1 = 1).

e The estimator of CDF is given by F(cj) =1-S5(c) &

8Errata A2 %, s =25 E T3 22 ICHRoTWVWED, ZOAF4 FT
&, co,-- 8V REODHELD J5IT consistent RFRECICH— L 7.
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The Multivariate Kaplan-Meier CDF
Estimator




Nonparametric Censored Regression
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