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Sample Selection Issues



Sample Selection

• Sample selection issues frequently arise in empirical studies.

• We concern that the treatment effect for those “selected as

treated” will differ from that for persons randomly selected

from the general population.

• Pioneering parametric approaches to deal with sample

selection can be found in Heckman (1976, 1979).
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Semiparametric Type-2 Tobit

Models



Type-2 Tobit Models

• The Type-2 Tobit model is the four equation system:

Y ⋆
1i = XT

1iβ1 + u1i,

Y ⋆
2i = XT

2iβ2 + u2i,

Y1i = 1(Y ⋆
1i > 0),

Y2i = Y ⋆
2i × 1(Y1i = 1).

• The variables (Y ⋆
1i, Y

⋆
2i) are latent (unobserved).

• The observed variables are (Y1i, Y2i, X1i, X2i).

• Effectively, Y ⋆
2i is observable only when Y1i = 1, equivalently

when Y ⋆
1i > 0.

• Typically, the second equation is of interest, e.g. the

coefficient β2.
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Type-2 Tobit Models: Estimation

• The Type-2 Tobit model is a classical selection model

introduced by Heckman (1976).

• It is conventional to assume that the error terms (u1i, u2i) are

independent of Xi = (X1i, X2i).

• For details of Heckman’s estimation procedure, see the

attached pdf file．
• Heckman’s estimation is one of the parametric approaches, as

he imposes the following parametric distributional

assumptions on the joint distribution of the errors:[
u1i

u2i

]
∼ Normal

([
0

0

]
,

[
1 σ12

σ21 σ2
2

])
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Semiparametric Type-2 Tobit Models

• Here we do not impose parametric distributional assumptions

on the joint distribution of the errors.

• Assume that (u1i, u2i) are independent of Xi = (X1i, X2i).

• Then, we obtain

E(Y2i | Xi, Y1i = 1) = XT
2iβ2 + E(u2i | Xi, Y1i = 1)

≡ XT
2iβ2 + g(XT

1iβ1),

where

g(z) = E(u2i | u1i > −z) = 1− Fu2|u1
(−z),

and Fu2|u1
(·) is the conditional CDF of u2i given u1i.

• The functional form of g(·) is unknown.

5



• The simple regression of Y2i on X2i using the available data

yields

Y2i = XT
2iβ2 + g(XT

1iβ1) + ϵ2i,

E(ϵ2i | Xi, Y1i = 1) = 0,

which is a partially linear single index model.

• Here we review the following estimation methods:

• Powell (1987),

• Ichimura and Lee (1991),

• Gallant and Nychka (1987),

• Heckman (1990)1.

1He proposes an estimation of intercept.
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Powell (1987)

• Powell (1987) proposes a two-step estimation procedure.

• Infeasible Estimation: Define Zi = XT
1iβ1. If Zi were

observed, the regression is

Y2i = XT
2iβ2 + g(Zi) + ϵ2i,

which is a partially linear model.

• This can be estimated using Robinson’s approach.

• Note that the intercept is absorbed by g(·), and that it must

be excluded from X2i
2 .

2Recall the identification conditions of semiparametric partially linear models.
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Powell (1987): Feasible Two-Step Estimation

• In practice, Zi is not observed.

• We implement the following two-step approach.

• 1st Step: Estimate β1 by a semiparametric binary choice

estimator, or by Powell’s (1984) CLAD estimator 3.

• 2nd Step: Let β̂1 denote the estimator of β1.

• Replace Zi with Ẑi = XT
1iβ̂1: Y2i = XT

2iβ2 + g(Ẑi) + ϵ2i.

• Estiamte β2 and g(·) by Robinson’s estimator.

• Note that Ẑi = XT
1iβ̂1 is a generated regressor, and that the

asymptotic distribution will differ from the result presented in

Chapter 7.
3CLAD推定量を使うのは，後ほど触れる Type-3 Tobitの 2段階推定の方が適
切なのでは？
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Ichimura and Lee (1991)

• Ichimura and Lee (1991) propose a joint estimator for

θ = (βT
1 , β

T
2 )

T based on the nonlinear regression:

Y2i = X2i + g(X1iβ1) + ϵ2i

for observations i such that Y2i is observed.

• Their objective function is given by

Qn(θ) =
1

n

n∑
i=1

1(Xi ∈ X )
[
Yi −XT

2iβ2 − ĝ(XT
1iβ1)

]2
,

where

ĝ(XT
1iβ1) =

∑
j ̸=i(Y2j −XT

2jβ2)Kh

(
(X1i−X1j)

T β1

h

)
∑

j ̸=iKh

(
(X1i−X1j)T β1

h

)
is a leave-one-out NW estimator of E(Y2i −XT

2iβ2 | XT
1iβ1)

4.
4教科書は leave-one-outになっていない．
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• Their estimator is an extension of a NLLS Heckit estimator,

which is based on the equation

Y2i = XT
2iβ2 + σ12λ(X

T
1iβ1) + ϵ2i.

• Such estimators ignore the first equation in the system.

• This is convenient as it simplifies the estimation.

• However, ignoring relevant information reduces efficiency.

• Ichimura and Lee derive the asymptotic normality:

√
n(θ̂ − θ)

d−→ Normal(0, A−1ΣA−1).

• They also derive consistent estimators Â and Σ̂.
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Gallant and Nychka (1987): Semi-Nonparametric MLE

• Gallant and Nychka suggest approximating the joint density of

the error terms f(u1i, u2i) by a series expansion:

f̃(u1i, u2i) = exp

[
− u21i
2σ2

1

− u22i
2σ2

2

] K∑
j=0

K∑
k=0

γjku
j
1iu

k
2i

 .

• f̃(u1i, u2i) is a baseline distribution of a joint normal

expression.

• This is accompanied by a power series expansion allowing for

a general form of the CDF.

• Using the above joint density formula, we can compute

f(u1i, u2i) and then construct a log-likelihood function.

• Maximizing the log-likelihood function, we obtain estimators

of β1 and other parameters.

• The estimator has consistency under K → ∞, and K
n → 0 as

n → ∞.
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• Coppejans and Gallant (2002) show that one can use

data-driven methods to select the power series expansion

terms when estimating f(u1i, u2i).

• Newey (1999) proposes a two-step series-based estimation
method.

• First, estimate β1 efficiently.

• Second, select β2 solving an efficient score equation.

• For details of nonparametric series methods, see Li and Racine

(2007, Chapter 15).

• 教科書にタイポが多いのと，元論文にアクセスできないのと
で，不正確な内容が含まれているかもしれないため，何かお
かしい点があれば指摘していただきたいです．

12



Heckman (1990): Intercept Estimation

• In the semiparametric Type-2 Tobit model, we cannot identify

an intercept term, which cannot be separated from g(·).
• One might be interested in the intercept, for example, when

determining “wage gaps” between unionized and

non-unionized workers, or when decomposing wage

differentials between different socioeconomic groups, etc · · · .
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• Letting µ denote the intercept, we write

Y ⋆
2i = µ+ X̃T

2iδ + u2i,

where X2i = (1, X̃T
2i)

T , and β2 = (µ, δT )T .

• Then, we obtain

E(Y2i | Xi, Y1i = 1) = µ+ X̃T
2iδ + g(XT

1iβ1).

• Recall the definition of g(·):

g(z) = E(u2i | u1i > −z),

which leads to

lim
z→∞

g(z) = E(u2i) = 0, or

lim
z→∞

E(Y2i − X̃T
2iδ | Y1i = 1, XT

1iβ1 > z) = µ.
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• Heckman (1990) suggests to use the observations such that

E(u2i | Y1i = 1) = g(XT
1iβ1), i.e., the observations such that

g(·) satisfies g(−∞) = 0.

• Thus, µ can be rewritten as

µ = E(Y2i − X̃T
2iδ | Y1i = 1, XT

1iβ1 > γn),

where γ → ∞ is a bandwidth.

• This can be estimated by

µ̃ =

∑n
i=1(Y2i − X̃2iδ̂)Y1i1(X

T
1iβ̂1 > γn)∑n

i=1 Y1i1(X
T
1iβ̂1 > γn)

.
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Extension: Andrews and Schafgans (1998)

• Since the indicator function 1(·) is not differentiable, it is
difficult to examine the asymptotic distribution of µ̃.

• Andrews and Schafgans (1998) suggest to replace the

indicator function with a smoothed non-decreasing CDF s(·),
which satisfies

s(z) = 0 for z ≤ 0,

s(z) = 1 for z ≥ b for some 0 < b < ∞, and

s(·) has third bounded derivatives.

• They estimate µ by

µ̂ =

∑n
i=1(Y2i − X̃2iδ̂)Y1is(X

T
1iβ̂1 > γn)∑n

i=1 Y1is(X
T
1iβ̂1 > γn)

.

• They find that the asymptotic distribution has a non-standard

rate, depending on the distribution of XT
1iβ1. 16



Semiparametric Type-3 Tobit

Models



Type-3 Tobit Models

• The Type-3 Tobit model is the four equation system:

Y ⋆
1i = XT

1iβ1 + u1i,

Y ⋆
2i = XT

2iβ2 + u2i,

Y1i = max{Y ⋆
1i, 0},

Y2i = Y ⋆
2i × 1(Y1i > 0).

• The difference from the Type-2 is that Y1i is censored than

binary.

• We observe Y ⋆
2i only when there is no censoring on Y ⋆

1i.

• Typically, the second equation is of interest, e.g. the

coefficient β2.
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Type-3 Tobit Models: Parametric Approaches

• Parametric approaches to estimate the Type-3 Tobit models

impose parametric distributional assumptions on the joint

distribution of the errors.

• Vella (1992, 1998)

• Wooldridge (1994)

• See the attached file for details.
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Semiparametric Type-3 Tobit Models

• Here we do not assume that the joint distribution of (u1i, u2i)

is known.

• Instead, we have E(u2i | u1i) = g(u1i), where g(·) is an
unknown function.

• In this case, it is easy to see that

E(Y2i | Xi, u1i) = XT
2iβ2 + g(u1i).

• Thus, we obtain

Y2i = XT
2iβ2 + g(u1i) + v2i,

E(v2i | u1i, Y1i > 0) = 0.
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Semiparametric Type-3 Tobit Models: Estimation

• If u1i were known, this would be a partially linear model.

• In practice, u1i is unknown.

• We can estimate u1i by Tobit, CLAD, etc · · · .
• Here we review the following estimation methods:

• Li and Wooldridge (2002),

• Chen (1997),

• Honore, Kyriazidou and Udry (1997),

• Lee (1994),

• the semiparametric Type-2 Tobit estimator besed on Ichimura

(1993); and Ichimura and Lee (1991).
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Li and Wooldridge (2002)

• Li and Wooldridge suggest a multistep method to estimate β2.

• 1st Step: Estimate β1, for example, by Powell’s (1984) CLAD

estimator 5 . We assume that for the 1st step there is a
√
n-consistent, and asymptotically normally distributed,

estimator for β1.

• 2nd Step: Replacing u1i with û1i, we implement Robinson’s

approach to estimate β2.

• They establish the
√
n-normality of their estimator β̂2:

√
n(β̂2 − β2)

d−→ Normal(0,Σ).

• Avar(β̂2) can be consistently estimated.
5Powell’s CLAD (censored least absolute deviation) estimator will be reviewed

below in Chapter 11.
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• Li and Wooldridge’s (2002) estimator does not achieve the

semiparametric efficiency bound. Efficient estimation can

usually be achieved by a one-step procedure, where β1 and β2

are estimated simultaneously as in Ai (1997).

• Powell’s CLAD estimator is a parametric approach, i.e., the

generated regressor is estimated from a parametric model.

Ahn and Powell (1993) suggest to estimate β1 in the 1st stage

using a nonparametric regression model.
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Chen (1997)

• Assume that (u1i, u2i) is independent of (X1i, X2i).

• Under the above assumption, it holds that

E(Y2i | X1i, X2i, u1i > 0, XT
1iβ1 > 0, Y1i > 0)

= E(Y2i | u1i > 0, Xi)

= XT
2iβ2 + α0,

where α0 is a constant. Note that α0 is not the intercept of

the original model.
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• 1st Step: Estimate β1 consistently by Honore and Powell

(1984), or by Powell’s CLAD. Let β̂1 denote the consistent

estimator of β1.

• 2nd Step: Run the following least squares:

min
β2,α

1

n

n∑
i=1

1{Y1i −XT
1iβ̂1 > 0, XT

1iβ̂1 > 0}(Y2i −XT
2iβ2 − α)2.

• A problem arising with Chen’s (1997) estimator is that it may

trim out too many observations, which leads to inefficient

estimation.

• Chen (1997) suggests an alternative estimator that trims far

fewer data points in finite-sample applications.
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Honore, Kyriazidou and Udry (1997)

• Honore, Kyriazidou and Udry (1997) suggest to relax the

normality assumption as it can be seen in Heckman (1979).

• Instead, they assume that the distribution of the error terms

(u1i, u2i) given regressors Xi is symmetric, with arbitary

heteroscedasticity permitted.

• In this case, conditional on the sample selection, the

conditional distribution is no longer symmetric.

• Their basic idea is that u2i is symmetrically distributed

around 0 if one estimate β2 using observations for which

−XT
1iβ1 < u1i < XT

1iβ1 (i.e., 0 < Y1i < 2XT
1iβ1).
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• Honore, Kyriazidou and Udry (1997) suugest the following

estimation method.

• 1st Step: Estimate β1 consistently, for example, by Powell’s

CLAD. Let β̂1 denote the consistent estimator of β1.

• 2nd Step: Run the following least absolute deviations:

min
β2

1

n

n∑
i=1

1{0 < Y1i < 2XT
1iβ̂1} | Y2i −XT

2iβ2 | .

• They establish the
√
n-normality of their estimator.
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Lee (1994)
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Comparing the 4 Estimators

LW Chen HKU Lee

Kernel Methods Required - - Required

Smoothing Parameter Choice Insensitive - - Insensitive

• In general, nonparametric kernel methods are sensitive to the

choice of smoothing parameters.

• Lee (1994); Min, Sheu and Wang (2003) suggest by

Monte-Carlo simulations that the estimators of LW(2002) and

Lee (1994) are fairly insensitive to the choice of smoothing

parameters.

• The reason is that the semiparametric estimators depend on

the average of nonparametric estimators, which are less

sensitive to different values of smoothing parameters than a

pointwise nonparametric kernel estimator.
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Christofides, Li, Liu and Min (2003)

LW Chen HKU Lee

Dependence Assumption Yes Yes No Yes

Symmetry Assumption No No Yes No

• “Dependence Assumption” means that one need to assume

that (u1i, u2i) is independent of (X1i, X2i).

• “Symmetry Assumption” means that one need to assume that

the distribution of the error terms (u1i, u2i) given regressors

Xi is symmetric.

• The symmetry condition is neither weaker nor stronger than

the independence condition.
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Tests for the Exisitence of Sample

Selection and Model Specification



Test for the Exisitence of Sample Selection

• Let us test whether sample selection exists or not.

• Consider the following null hypothesis:

Ha
0 : E(u2|u1) = 0,

Ha
1 : E(u2|u1) ̸= 0.

• A test statistic for Ha
0 is proposed by Li and Wang (1998);

and Zheng (1996):

Ĩan =
1

n1(n1 − 1)

n1∑
i=1

n1∑
j ̸=i

û2iû2jKh(û1iû1j),

where n1 denotes the number of observations with Y2i > 0,

and û1i and û2i are the OLS residuals.

30



• Under conditions 10.1, 10.2, and 10.3, we obtain (as

n1 → ∞, h → 0, n1h → ∞),

n1h
1
2
Ĩan
σ̂a

d−→ Normal(0, 1) under Ha
0

and

P

(∣∣∣∣∣n1h
1
2
Ĩan
σ̂a

∣∣∣∣∣ > C

)
→ 1 for any C > 0 under Ha

1,

where σ̂2
a =

2h

n1(n1 − 1)

n1∑
i=1

n1∑
j ̸=i

û22iû
2
2jK

2
h(û1i − û1j).
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Test for Model Specification

• Suppose that we reject Ha
0, that is, we consider there exists

sample selection.

• Consider the following null hypothesis:

Hb
0 : E(Y2|X2, u1) = XT

2 β2 + u1γ,

Hb
1 : E(Y2|X2, u1) = XT

2 β2 + g(u1) with g(u1) ̸= u1γ.

• A test statistic for Ha
0 is proposed by Li and Wang (1998):

Ĩbn =
1

n1(n1 − 1)

n1∑
i=1

n1∑
j ̸=i

ũ2iũ2jKh(û1iû1j),

where n1 denotes the number of observations with Y2i > 0,

and û1i and ũ2i are the residuals from OLS β1 and Li and

Wooldridge’s (2002) β2, respectively.
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• Under conditions 10.1, 10.2, and 10.3, we obtain (as

n1 → ∞, h → 0, n1h → ∞),

n1h
1
2
Ĩbn
σ̂b

d−→ Normal(0, 1) under Hb
0

and

P

(∣∣∣∣∣n1h
1
2
Ĩbn
σ̂b

∣∣∣∣∣ > C

)
→ 1 for any C > 0 under Hb

1,

where σ̂2
b =

2h

n1(n1 − 1)

n1∑
i=1

n1∑
j ̸=i

ũ22iũ
2
2jK

2
h(û1i − û1j).
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Nonparametric Sample Selection

Model



Das, Newey, and Vella (2003)

• See Das, Newey, and Vella (2003); and Li and Racine (2007,

Section 10.4).
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