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Sample Selection Issues



Sample Selection

e Sample selection issues frequently arise in empirical studies.
e We concern that the treatment effect for those “selected as
treated” will differ from that for persons randomly selected

from the general population.

e Pioneering parametric approaches to deal with sample
selection can be found in Heckman (1976, 1979).



Semiparametric Type-2 Tobit
Models



Type-2 Tobit Models

e The Type-2 Tobit model is the four equation system:

Y75 = X8+ wai,

Y3 = X380 + uai,

Vi, = 1(Yy; > 0),

Yoi = Yo; x 1(Yy; = 1).

e The variables (Y75, Y5:) are latent (unobserved).

e The observed variables are (Y1;, Y2;, X1, X2i).

o Effectively, Y5 is observable only when Y7; = 1, equivalently
when Y7 > 0.

e Typically, the second equation is of interest, e.g. the
coefficient Ss.



Type-2 Tobit Models: Estimation

e The Type-2 Tobit model is a classical selection model
introduced by Heckman (1976).

e |t is conventional to assume that the error terms (uy;, ug;) are
independent of X; = (X714, Xo;).

e For details of Heckman's estimation procedure, see the
attached pdf file.

e Heckman's estimation is one of the parametric approaches, as
he imposes the following parametric distributional
assumptions on the joint distribution of the errors:
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Semiparametric Type-2 Tobit Models

e Here we do not impose parametric distributional assumptions
on the joint distribution of the errors.

e Assume that (u;, ug;) are independent of X; = (X714, Xo;).

e Then, we obtain

E(Ya | Xi, Y1 = 1) = X5, 82 + E(ug; | Xi, Y1 = 1)
= X1,8 + g(X{:81),

where
g(Z) - E(u2l ‘ U4 > _Z) =1- Fug‘ﬂq(_z)?

and F,,,, (-) is the conditional CDF of uy; given uy;.

e The functional form of g(-) is unknown.



e The simple regression of Y5; on Xy, using the available data

yields

Yoi = X180 + g(XEB1) + €,
E(e2 | Xi,Y1:=1) =0,

which is a partially linear single index model.
e Here we review the following estimation methods:
o Powell (1987),
e Ichimura and Lee (1991),
e Gallant and Nychka (1987),
e Heckman (1990).

'He proposes an estimation of intercept.



Powell (1987)

e Powell (1987) proposes a two-step estimation procedure.

e Infeasible Estimation: Define Z; = Xﬂﬁl. If Z; were
observed, the regression is

Yoi = X362 + 9(Zi) + €2,

which is a partially linear model.
e This can be estimated using Robinson’s approach.

e Note that the intercept is absorbed by ¢(-), and that it must
be excluded from Xo; 2 .

2Recall the identification conditions of semiparametric partially linear models.



Powell (1987): Feasible Two-Step Estimation

e In practice, Z; is not observed.
e We implement the following two-step approach.

e 1st Step: Estimate 81 by a semiparametric binary choice
estimator, or by Powell's (1984) CLAD estimator 3.

e 2nd Step: Let Bl denote the estimator of (.

e Replace Z; with Z; = X%’;Blz Yo = X;;/BQ + g(Z) + €9;.

e Estiamte 5 and g(-) by Robinson's estimator.

e Note that Z; = XlTiﬁl is a generated regressor, and that the

asymptotic distribution will differ from the result presented in
Chapter 7.
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Ichimura and Lee (1991)

e Ichimura and Lee (1991) propose a joint estimator for
0 = (BT, B1)T based on the nonlinear regression:

Yo, = Xoi + 9(X1:61) + €2

for observations i such that Yy; is observed.
e Their objective function is given by

1 & ) ,
i=1
where
3 ii(Yoj — XT:80) K (W)
25 Kn (W)

is a leave-one-out NW estimator of E(Y2; — X%;-Bg | XlTiﬁl) 4.
SHRIE T leave-one-out 1272 5 TV,
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Their estimator is an extension of a NLLS Heckit estimator,
which is based on the equation

Yoi = X502 + 012\ (X 81) + 2.

Such estimators ignore the first equation in the system.
This is convenient as it simplifies the estimation.
However, ignoring relevant information reduces efficiency.
Ichimura and Lee derive the asymptotic normality:

Vn(6 —0) 4 Normal(0, A=1xA71).

They also derive consistent estimators Aand 3.
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Gallant and Nychka (1987): Semi-Nonparametric MLE

e Gallant and Nychka suggest approximating the joint density of
the error terms f(u14,u2;) by a series expansion:

2

~ u u

f(u1i,u2;) = exp [— L 21] E E ikl ub;
20 202 v

7=0 k=0

. f(uu,um‘) is a baseline distribution of a joint normal
expression.

e This is accompanied by a power series expansion allowing for
a general form of the CDF.

e Using the above joint density formula, we can compute
f(u14,u2;) and then construct a log-likelihood function.

e Maximizing the log-likelihood function, we obtain estimators
of (81 and other parameters.

e The estimator has consistency under K — oo, and % — 0 as

11
n — 0.



Coppejans and Gallant (2002) show that one can use
data-driven methods to select the power series expansion
terms when estimating f (w14, u2;).
Newey (1999) proposes a two-step series-based estimation
method.

e First, estimate (3 efficiently.

e Second, select By solving an efficient score equation.
For details of nonparametric series methods, see Li and Racine
(2007, Chapter 15).
FREIZZAARDZ VDL, TLwXIZT 7B ATERVD L
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Heckman (1990): Intercept Estimation

e In the semiparametric Type-2 Tobit model, we cannot identify

an intercept term, which cannot be separated from g(-).

e One might be interested in the intercept, for example, when
determining “wage gaps” between unionized and
non-unionized workers, or when decomposing wage
differentials between different socioeconomic groups, etc - - -
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e Letting 1 denote the intercept, we write
YQ’; = U+ Xg;(s + w9y,

where Xo; = (1, X2)T, and By = (u,67)7".

e Then, we obtain
E(Yai | Xi, Y1 = 1) = p+ X3,6 + g(X{;81).
e Recall the definition of g(-):
9(2) = E(ug; | uyi > —2),
which leads to
zlglgo 9(z) = E(ug;) =0, or

lim E(Yy — X168 | Yy = 1, XEB1 > 2) = p.
Z—00
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e Heckman (1990) suggests to use the observations such that
E(ug; | Y1; = 1) = g(X{;81), i.e., the observations such that
g(+) satisfies g(—o0) = 0.

e Thus, 1 can be rewritten as
=E(Ya — X3;6 | Yii = 1, X{;81 > ),

where v — oo is a bandwidth.

e This can be estimated by

ﬂ _ Z? 1(Y27, XQ'L(S)YM (X,ll; /jl > ’yn)
Zz 1lez (X 31 >7n)
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Extension: Andrews and Schafgans (1998)

e Since the indicator function 1(-) is not differentiable, it is
difficult to examine the asymptotic distribution of /.

e Andrews and Schafgans (1998) suggest to replace the
indicator function with a smoothed non-decreasing CDF s(-),
which satisfies

s(z) =0 for z <0,
s(z) =1 for z > b for some 0 < b < oo, and

s(+) has third bounded derivatives.

e They estimate i by
Soie (Yai = X2i0)Vigs(XTi51 > m)
>oicy Yiis(X{i81 > )
e They find that the asymptotic distribution has a non-standard
rate, depending on the distribution of X7,3;.

=
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Semiparametric Type-3 Tobit
Models




Type-3 Tobit Models

e The Type-3 Tobit model is the four equation system:

Yy = X8+ wai,
Yo = X3,82 + usi,
Y1; = max{Y7;, 0},
Yo; = Y55 x 1(Y1; > 0).

e The difference from the Type-2 is that Y7, is censored than
binary.
e We observe Y5 only when there is no censoring on Y7;.

e Typically, the second equation is of interest, e.g. the
coefficient 5.
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Type-3 Tobit Models: Parametric Approaches

Parametric approaches to estimate the Type-3 Tobit models
impose parametric distributional assumptions on the joint

distribution of the errors.

Vella (1992, 1998)

Wooldridge (1994)

See the attached file for details.

18



Semiparametric Type-3 Tobit Models

e Here we do not assume that the joint distribution of (u1;, u9;)

is known.

e Instead, we have E(ug; | u1;) = g(u1;), where g(-) is an
unknown function.

e In this case, it is easy to see that
E(Ya; | Xy, u1i) = X3,82 + g(ui).

e Thus, we obtain

Yai = X502 + g(u1;) + vai,
E(vg; | u14, Y1, > 0) = 0.
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Semiparametric Type-3 Tobit Models: Estimation

If u1; were known, this would be a partially linear model.

In practice, uy; is unknown.

e We can estimate uy; by Tobit, CLAD, etc ---.
e Here we review the following estimation methods:
e Li and Wooldridge (2002),
Chen (1997),
Honore, Kyriazidou and Udry (1997),
Lee (1994),
the semiparametric Type-2 Tobit estimator besed on Ichimura
(1993); and Ichimura and Lee (1991).
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Li and Wooldridge (2002)

e Li and Wooldridge suggest a multistep method to estimate 5.
e 1st Step: Estimate (31, for example, by Powell's (1984) CLAD

estimator ® . We assume that for the 1st step there is a
\/n-consistent, and asymptotically normally distributed,
estimator for 3.

e 2nd Step: Replacing uy; with 4;, we implement Robinson's
approach to estimate 5.

e They establish the y/n-normality of their estimator Bo:
Vn(Bs — B2) & Normal(0,%).

e Avar(f2) can be consistently estimated.
*Powell’s CLAD (censored least absolute deviation) estimator will be reviewed

below in Chapter 11.
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e Li and Wooldridge's (2002) estimator does not achieve the
semiparametric efficiency bound. Efficient estimation can
usually be achieved by a one-step procedure, where 31 and [
are estimated simultaneously as in Ai (1997).

e Powell's CLAD estimator is a parametric approach, i.e., the
generated regressor is estimated from a parametric model.
Ahn and Powell (1993) suggest to estimate f3; in the 1st stage
using a nonparametric regression model.
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Chen (1997)

e Assume that (uq;, ug;) is independent of (Xy;, Xo;).
e Under the above assumption, it holds that
E(Ya | X1iy Xoiyur; > 0, X161 > 0,Y3; > 0)
= E(Ygz‘ | u; > 0, Xi)
= X%ﬁz + o,

where « is a constant. Note that «y is not the intercept of

the original model.
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1st Step: Estimate (1 consistently by Honore and Powell
(1984), or by Powell's CLAD. Let (3; denote the consistent

estimator of ;.
2nd Step: Run the following least squares:

n

! . .
min — Y " 1{Vy; — X5 > 0, X181 > 0} (Yos — X5;80 — ).

7a n .
B2 P

A problem arising with Chen's (1997) estimator is that it may
trim out too many observations, which leads to inefficient
estimation.

Chen (1997) suggests an alternative estimator that trims far
fewer data points in finite-sample applications.
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Honore, Kyriazidou and Udry (1997)

e Honore, Kyriazidou and Udry (1997) suggest to relax the
normality assumption as it can be seen in Heckman (1979).

e Instead, they assume that the distribution of the error terms
(u14,u2;) given regressors X; is symmetric, with arbitary
heteroscedasticity permitted.

e In this case, conditional on the sample selection, the
conditional distribution is no longer symmetric.

e Their basic idea is that wus; is symmetrically distributed

around 0 if one estimate 35 using observations for which
— XL <uy < XEB (ie., 0 < Yy <2X161).
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Honore, Kyriazidou and Udry (1997) suugest the following
estimation method.

1st Step: Estimate 31 consistently, for example, by Powell’s
CLAD. Let 3 denote the consistent estimator of 3.
2nd Step: Run the following least absolute deviations:
1 T4 T
min ~ > " 1{0 < Y3; < 2X{;51} | Yo — X582 | .

n
P M

They establish the \/n-normality of their estimator.
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Lee (1994)

Under the assumption of independence between the errors and the
regressors, Lee (1994, equation 2.12) shows that

Yo — E(Valur > — X161, X|8 > X},581)

(10.25)
= [‘ r'.er 5] Er\-\':‘ “(I"jl > ‘\'i:dl }]i.‘ + u2i, . )

where ug; satisfies E(ug;|u; > — X181, X{3 > X{,51) =0. Lee
suggests first replacing the conditional expectations in (10.25) by kernel
estimators (also /7| needs to be replaced by a first stage estimator) and then
applying a least squares procedure to estimate /35 (which we denote by 1’3

.Lee). Lee establishes the asymptotie normality of | j y.Lee.
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Comparing the 4 Estimators

LW Chen HKU Lee
Kernel Methods Required - - Required
Smoothing Parameter Choice | Insensitive - - Insensitive

e In general, nonparametric kernel methods are sensitive to the
choice of smoothing parameters.

e Lee (1994); Min, Sheu and Wang (2003) suggest by
Monte-Carlo simulations that the estimators of LW(2002) and
Lee (1994) are fairly insensitive to the choice of smoothing
parameters.

e The reason is that the semiparametric estimators depend on
the average of nonparametric estimators, which are less
sensitive to different values of smoothing parameters than a

pointwise nonparametric kernel estimator.
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Christofides, Li, Liu and Min (2003)

LW  Chen HKU Lee
Dependence Assumption | Yes  Yes No  Yes

Symmetry Assumption No No Yes No

e “Dependence Assumption” means that one need to assume
that (w14, ug;) is independent of (X1;, Xo;).

e “Symmetry Assumption” means that one need to assume that
the distribution of the error terms (uy;, ug;) given regressors
X, is symmetric.

e The symmetry condition is neither weaker nor stronger than
the independence condition.

29



Tests for the Exisitence of Sample
Selection and Model Specification




Test for the Exisitence of Sample Selection

e Let us test whether sample selection exists or not.

e Consider the following null hypothesis:
HE : E(ug|u;) =0,
HY : E(us|uy) # 0.

o A test statistic for Hf is proposed by Li and Wang (1998);
and Zheng (1996):

1 ny ni
[0 = ———— 3 gyt K (il
" nl(nl - 1) i=1 ]752 ' ’ ( ' ])’

where ni denotes the number of observations with Y5, > 0,
and 4y; and 1g; are the OLS residuals.
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e Under conditions 10.1, 10.2, and 10.3, we obtain (as
ny — oo, h = 0, nth — ),

Ta

1
mhz % Normal(0, 1) under H{

Oq
and
1 ~(Z
P ( nlhi(?z > C) — 1 for any C' > 0 under HY,
ny ni
where 62 = =) ;;a%zugjl(h ti1; — Q).
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Test for Model Specification

e Suppose that we reject Hfj, that is, we consider there exists

sample selection.

e Consider the following null hypothesis:

Hp : E(Yz| X2,u1) = X3 B2 + w17,

HY : E(Y2| X2, u1) = X3 B2+ g(u1) with g(u) # w17y
e A test statistic for Hf is proposed by Li and Wang (1998):

ny ni

- 1 -~ o
It = 7) ZZUQiUQth<U1iu1j)7

ni(m —1) & i

where n; denotes the number of observations with Y5; > 0,
and u1; and 9; are the residuals from OLS (31 and Li and
Wooldridge's (2002) S, respectively.
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e Under conditions 10.1, 10.2, and 10.3, we obtain (as
ny — 0o, h — 0, nih — 0),

b

I
nlh%A—" 4, Normal(0, 1) under Hg
Ob
and
LI b
Pl |nihz=| > C | — 1 for any C' > 0 under Hj,
Tp
ny ni
where 67 = ZZ"&%%&% — Uy ).
z—l JFi
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Nonparametric Sample Selection
Model




Das, Newey, and Vella (2003)

e See Das, Newey, and Vella (2003); and Li and Racine (2007,
Section 10.4).
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