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Introduction

• A semiparametric single index model is given by

Y = g(XTβ0) + u,

where

Y ∈ R : a dependent variable,

X ∈ Rq : a q × 1 explanatory vector,

β0 ∈ Rq : a q × 1 vector of unknown parameters,

u ∈ R : an error term which satisfies E(u | X) = 0,

g(·) : an unknown distribution function.
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Introduction

• Even though x is a q × 1 vector, xTβ0 is a scalar of a single

linear combination, which is called a single index.

• By the form of the single index model, we obtain

E(Y | X) = g(XTβ0),

which means that the conditional expectation of Y only

depends on the vector X through a single index XTβ0.

• The model is semiparametric when β ∈ Rq is estimated with

the parametric methods and g(·) with the nonparametric

methods.
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Examples of Parametric Single Index Model

• If g(·) is the identity function, then the model turns out to be

a linear regression model:

Y = g(XTβ0) + u = XTβ0 + u.

• If g(·) is the CDF of Normal(0, 1), then the model turns out
to be a probit model.

• See the textbook for further discussions on a probit model.

• If g(·) is the CDF of logistic distribution, then the model turns

out to be a logistic regression model.
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Identification Conditions

Proposition 8.1 (Identification of a Single Index Model)� �
For the semiparametric single index model Y = g(xTβ0)+u,

identification of β0 and g(·) requires that
• (i) x should not contain a constant/an intercept, and

must contain at least one continuous variable. Moreover,

∥β0∥=1.

• (ii) g(·) is differentiable and is not a constant function on

the support of xTβ0.

• (iii) For the discrete components of x, varying the values

of the discrete variables will not divide the support of

xTβ0 into disjoint subsets.� �
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Identification Condition (i)

• Note that the location and the scale of β0 are not identified.

• The vector x cannot include an intercept because the function
g(·) (which is to be estimated in nonparametric manners)
includes any location and level shift.

• That is, β0 cannot contain a location parameter.
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Identification Condition (i)

• Some normalization criterion (scale restrictions) for β0 are
needed.

• One approach is to set ∥β0∥ = 1.

• The second approach is to set one component of β0 to equal

one. This approach requires that the variable corresponding to

the component set to equal one to be continuously distributed

and has a non-zero coefficient.

• Then, x must be dimension 2 or larger. If x is

one-dimensional, then β0 ∈ R1 is simply normalized to 1, and

the model is the one-dimensional nonparametric regression

E(Y | x) = g(x) with no semiparametric component.
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Identification Conditions (ii) and (iii)

• The function g(·) cannot be a constant function and must be

differentiable on the support of xTβ0.

• x must contain at least one continuously distributed variable
and this continuous variable must have non-zero coefficient.

• If not, xTβ0 only takes a discrete set of values and it would be

impossible to identify a continuous function g(·) on this

discrete support.
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Ichimura’s Method

• Textbook: Sections 8.2; 8.4.1; and 8.12.

• Suppose that the functional form of g(·) were known.

• Then we could estimate β0 by minimizing the least-squares

criterion: ∑
i=1

[
Yi − g(XT

i β)
]2

with respect to β.

• We could think about replacing g(·) with a nonparametric

estimator ĝ(·).
• However, since g(z) is the conditional mean of Yi given

XT
i β0 = z, g(·) depends on unknown β0. thus we cannot

estimate g(·) here.
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Ichimura’s Method

• Nevertheless, for a fixed value of β, we can estimate

G(XT
i β) := E(Yi | XT

i β) = E(g(XT
i β0) | XT

i β).

• In general G(XT
i β) ̸= g(XT

i β).

• When β = β0, it holds that G(XT
i β0) = g(XT

i β0).
1

1一般の XT
i β を用いて条件付けると，Gと g は通常は一致しないが，正しい

インデックス XT
i β = XT

i β0 のときだけ一致するということ．
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Ichimura’s Method

• First, we estimate G(XT
i β) with the leave-one-out NW

estimator:

Ĝ−i(X
T
i β) : = Ê−i(Yi | XT

i β)

=

∑
j ̸=i YjK

(
XT

j β−XT
i β

h

)
∑

j ̸=iK

(
XT

j β−XT
i β

h

) .
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Ichimura’s Method

• Second, using the leave-one-out NW estimator Ĝ−i(X
T
i β), we

estimate β with

β̂ := argmin
β

n∑
i=1

[
Yi − Ĝ−i(X

T
i β)

]2
w(Xi)1(Xi ∈ An)

:= argmin
β

Sn(β),

which is called Ichimura’s estimator (the WSLS estimator).

• w(Xi) is a nonnegative weight function.
• 1(Xi ∈ An) is a trimming function to trim out small values of

p̂(XT
i β) =

1

nh

∑
j ̸=iK

(
XT

j β−XT
i β

h

)
, so that we do not

suffer from the random denominator problem.
• Aδ = {x : p(xTβ) ≥ δ, for ∀β ∈ B}.
• An = {x : ||x− x⋆|| ≤ 2h, for ∃x⋆ ∈ Aδ}, which shrinks to Aδ

as n → ∞ and h → 0.
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Asymptotic Distribution of Ichimura’s Estimator

• Let β̂ denote the semiparametric estimator of β0 obtained

from minimizing Sn(β).

• To derive the asymptotic distribution of β̂, the following

conditions are needed:
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Asymptotic Distribution of Ichimura’s Estimator

Assumption 8.1� �
The set Aδ is compact, and the weight function w(·) is bounded
and posotive on Aδ. Define the set

Dz = {z : z = xTβ, β ∈ B, x ∈ Aδ}.

Letting p(·) denote the PDF of z ∈ Dz, p(·) is bounded below

by a positive constant for ∀z ∈ Dz� �
Assumption 8.2� �
g(·) and p(·) are 3 times differentiable w.r.t. z = xβ . The

third derivatives are Lipschitz continuous uniformly over B for
∀z ∈ Dz.� �
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Asymptotic Distribution of Ichimura’s Estimator

Assumption 8.3� �
The kernel function is a bounded second order kernel, which has

bounded support; is twice differentiable; and its second deriva-

tive is Lipschitz continuous.� �
Assumption 8.4� �
E(|Y m|) < ∞ for ∃m ≥ 3. var(Y | x) is bounded and bounded

away from zero for ∀x ∈ Aδ.
q ln(h)

nh
3+ 3

m−1
→ 0 and nh8 → 0 as

n → ∞.� �
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Asymptotic Distribution of Ichimura’s Estimator

Theorem 8.1. Under assumptions 8.1 through 8.4,
√
n(β̂ − β0)

d−→ Normal(0,ΩI),

with

ΩI = V −1ΣV −1,

V = E{w(Xi)(g
(1)
i )2

× (Xi − EA(Xi | XT
i β0))(Xi − EA(Xi | XT

i β0))
T },

Σ = E{w(Xi)σ
2(Xi)(g

(1)
i )2

× (Xi − EA(Xi | XT
i β0))(Xi − EA(Xi | XT

i β0))
T },

where

• (g
(1)
i ) = ∂g(v)

∂v |v=XT
i β0

,

• EA(Xi | v) = E(Xi | xTAβ0 = v),

• xA has the distribution of Xi conditional on Xi ∈ Aδ. 17



Asymptotic Distribution of Ichimura’s Estimator

• See Ichimura (1993); and Hardle, Hall and Ichimura (1993)

for the proof of Theorem 8.1.

• Horowitz (2009) provides an excellent heuristic outline for

proving Theorem 8.1, using only the familiar Taylor series

methods, the standard LLN, and the Lindeberg-Levy CLT.
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Optimal Weight under the Homoscedasticity Assumption

• We introduce the following homoscedasticity assumption:

E(u2i | Xi) = σ2.

• Under this assumption, the optimal choice of w(·) is
w(Xi) = 1.

• In this case,

β̂ = argmin
β

n∑
i=1

(Yi − Ĝ−i(X
T
i β)

2)1(Xi ∈ An)

is semiparametrically efficient in the sense that ΩI is the

semiparametric variance lower bound (conditional on

X ∈ Aδ).
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Optimal Weight under Heteroscedasticity

• In general, E(u2i | Xi) = σ2(Xi).

• An infeasible case: If one assues that E(u2i | Xi) = σ2(XT
i β0),

that is, the conditional variance depends only on the single

index XT
i β0, the choice of w(Xi) =

1
σ2(XT

i β0)
can lead to a

semiparametrically efficient estimation.

• We could employ a two-step procedure as follows.
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Two-Step Procedure to Choose Optimal Weight

• Suppose that the conditional variance is a function of XT
i β0

(Let σ2(XT
i β0) denote it).

• The first step: Use w(Xi) = 1 to obtain a
√
n-consistent

estimator of β0.

• Let β̃0 denote the estimator of β0, and ũi = Yi − ĝ(XT
i β̃0)

denote the residual obtained from β̃0.

• We can obtain a consistent nonparametric estimator of the

conditional variance: σ̂2(XT
i β̃0).
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Two-Step Procedure to Choose Optimal Weight

• The second step: Estimate β0 again using w(Xi) =
1

σ̂2(XT
i β̃0)

:

β̂0 = argmin
β

n∑
i=1

[
Yi − Ĝ−i(X

T
i β)

]2 1

σ̂2(XT
i β̃0)

1(Xi ∈ An).

• The estimator β̂0 is semiparametrically efficient because

σ̂2(v)− σ2(v) converges to zero at a particular rate uniformly

over v ∈ Dv (Dv is the support of XT
i β0).

2

2σ̂2(XT
i β)を用いるケースもある．
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Direct Semiparametric Estimators for β

• Textbook: Sections 8.3; and 8.4.2.

• Here we review:

• Hardle and Stoker’s (1989) Average Derivative Estimator,

• Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator,

• Li, Lu and Ullah’s (2003) Estimator, and

• Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator.

• The advantage of the direct estimation method is that we can

estimate β0 and g(xTβ0) directly without running the

nonlinear least squares, which leads to the computational

simplicity.

• We still suffer from a finite-sample problem.
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Hardle and Stoker’s (1989) Average Derivative Estimator

• Suppose that x is a q × 1 vector of continuous variables.

• Then we obtain the average derivative of E(Y | X = x):

E
[
∂E(Y | X = x)

∂x

]
= E

[
g(1)(xTβ0)

]
β0

• Recall that the scale of β0 is not identified, which means that

the constant E
[
g(1)(xTβ0)

]
does not matter. That is, a

normalized estimation of E
[
∂E(Y |X=x)

∂x

]
is an estimation of

normalized β0.
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Hardle and Stoker’s (1989) Average Derivative Estimator

• Let Ê(Yi | Xi) denote the NW estimator of E(Yi | Xi):

Ê(Yi | Xi) =

∑n
j=1 YjK

(
Xi−Xj

a

)
∑n

j=1K
(
Xi−Xj

a

) .

• Assuming that the kernel function is differentiable, we can

estimate β0, estimating E
[
∂E(Y |X=x)

∂x

]
with its sample

analogue:

β̃ave =
1

n

n∑
i=1

∂Ê(Yi | Xi)

∂Xi
.

• The scale normalization can also be implemented by
β̃ave

|β̃ave|
.
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Hardle and Stoker’s (1989) Average Derivative Estimator

• An issue raised with this estimator is the random denominator

problem, which leads to a difficulty in the derivation of the

asymptotic properties.

• Rilstone (1991) establishes the
√
n-normality using a

trimming function.
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• As we obtain the average derivative above, we also obtain the

weighted average derivative of E(Y | X = x):

E
[
w(x)

∂E(Y | X = x)

∂x

]
= E

[
w(x)g(1)(xTβ0)

]
β0.
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• Let w(x) be the density function f(x), and δ denote the

density-weighted average derivative of E(Y | X = x).

• Then we obtain

δ = E
[
f(X)

∂E(Y | X = x)

∂x

]
= E

[
f(X)g(1)(XTβ0)

]
=

∫
g(1)(xTβ0)f

2(x)dx

= g(xTβ0)f
2(x)− 2

∫
g(xTβ0)f

(1)(x)f(x)dx.
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• Assume that f(x) = 0 at the boundary of the support of X.

Then we observe that g(xTβ0)f
2(x) = 0, that is,

δ = −2

∫
g(xTβ0)f

(1)(x)f(x)dx

= −2E[g(XTβ0)f
(1)(X)]

= −2E[Y f (1)(X)].

• We can estimate δ by its sample analogue:

δ̂ = − 2

n

n∑
i=1

Yif̂
(1)
−i (Xi),

where f̂−i(Xi) is the leave-one-out NW estimator of f(X):

f̂−i(Xi) =
1

n− 1

∑
j ̸=i

(
1

h

)q

K

(
Xi −Xj

h

)
.

29



Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• There is no denominator messing with uniform convergence.

There is only a density estimator, no conditional mean needed.

• The textbook uses the NW estimator f̂ (1)(Xi) in (8.17).

• However, Powell, Stock and Stoker (1989) define their

estimator using the leave-one-out NW estimator f̂
(1)
−i (Xi).

• Here we proceed with Powell, Stock and Stoker (1989).
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• A useful representation of δ̂ is given by

δ̂ =
−2

n(n− 1)

n∑
i=1

∑
j ̸=i

(
1

h

)q+1

YiK
(1)

(
Xi −Xj

h

)
.

• Under some assumptions, if h → 0 and nhq+2 → ∞ hold,

then the density-weighted average derivative estimator δ̂

satisfies that

√
n(δ̂ − E[δ̂]) d−→ Normal(0,Σδ),

where

Σδ = 4E[σ2(X)f (1)(X)f (1)(X)T ] + 4Var(f(X)g(1)(X)).
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U-Statistics Form of δ̂

• Recall that K(·) is differentiable and symmetric, that is,

K(1)(u) = −K(1)(−u). Then, we obtain the standard

U -statistics form of δ̂:

δ̂ = −

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

(
1

h

)q+1

K(1)

(
Xi −Xj

h

)
(Yi − Yj).

• Letting Zi denote (Yi, X
T
i )

T and pn(Zi, Zj) denote

− 1
hq+1K

(1)
(
Xi−Xj

h

)
(Yi − Yj), δ̂ can be rewritten as

δ̂ =

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

pn(Zi, Zj).

• This representation of δ̂ permits a direct analysis of its

asymptotic properties, based on the asymptotic theory of

U -statistics. Further discussions can be seen in Serfling

(1980); van der Vaart (2000, Chapter 12).
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• The asymptotic bias is a bit complicated.

• Let q be the dimension of X, and set

p =


q + 4

2
if q is even,

q + 3

2
if q is odd.

• The kernel function K(·) for the estimation of f(·) is required
to be of order at least p.

• The asymptotic bias is
√
n(E(δ̂)− δ) = O(n

1
2hp), which is

o(1) if nh2p → 0.
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

• nh2p → 0 is violated if h is selected to be optimal for the

estimation of f(·) or f (1)(·). That is, this requirement needs

the bandwidth h to undersmooth to reduce the bias. Further

discussions on the bandwidth selection follow in Section 8.4.

• Cattaneo, Crump and Jansson (2010, 2011) introduce another

asymptotic theory to relax strong assumptions .

• Nishiyama and Robinson (2005): Density-weighted average

derivative estimators can be refined by bootstrapping

methods.
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Nishiyama and Robinson (2005)
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Li, Lu and Ullah’s (2003) Estimator

• We consider the estimation of the average derivative

E[g(1)(XTβ0)] again.

• We can also use the local polynomial method for the

estimation of g(1)(XTβ0).

• Let ĝ(1)(XT
i β0) denote the kernel estimator of g(1)(Xiβ0),

which is obtained from an m-th order local polynomial

regression.

• Li, Lu and Ullah (2003) suggest to use β̃ave =
1

n
ĝ(1)(XT

i β0)

to estimate β = E[g(1)(XTβ0)].
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Li, Lu and Ullah’s (2003) Estimator

• Their approach does not require the condition f(x) = 0 at the
boundary of the support of X. However, they require to
assume that

• the support of X is a compact set, and that

• the density f(x) is bounded below by a positive constant at

the support of X,

which avoids the use of a trimming function.
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Li, Lu and Ullah’s (2003) Estimator

• Under the assumptions so far and some additional conditions,

if we use a second order kernel, where n

q∑
s=1

a2ms → 0 and

na1 · · · aq
∑q

s=1

ln(n)
→ ∞ with m denoting the order of local

polynomial estimation, then,
√
n(β̃ave − β)

d−→ Normal
(
0,Φ+ var(g(1)(XTβ0))

)
,

where Φ = E

[
σ2(X)f (1)(X)f (1)(X)T

f (2)(X)

]
.

• The proof of the asymptotic normality can be derived from

U -statistics theory.

• Newey (1994) shows that the asymptotic variance does not

depend on the specific nonparametric estimation method.
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Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator

• Powell, Stock and Stoker’s (1989) density-weighted average

derivative estimator requires the density of X to be

increasingly smooth as the dimension of X increases.

• This is necessary to make
√
n(δ̂ − δ) asymptotically normal

with a mean of 0.

• Practical Consequence: The finite-sample performance of the

density-weighted average derivative estimator is likely to be

deteriorated as the dimension of X increases, especially if the

density of X is not very smooth.

• Specifically, the estimator’s bias and MSE are likely to

increase as the the dimension of X increases.
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Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator

• Hristache, Juditsky and Spokoiny (2001) introduce an iterated

average derivative estimator that overcomes this problem.

• Their estimator is based on the observation that g(xTβ0) does

not vary when x varies in a direction that is orthogonal to β0.

• Therefore, only the directional derivative of E(Y | X = x)

along the direction of β is needed for estimation.

• Suppose that this direction were known. Then estimating the

directional derivative would be a one-dimensional

nonparametric estimation problem, and there would be no

curse of dimensionality.
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Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator

• In practice, the direction of β is unknown.

• Hristache, Juditsky and Spokoiny (2001) show that this can

be estimated with sufficient accuracy through an iterative

procedure.

• Their idea is to use prior information about the vector β for

improving the quality of the gradient estimate by extending a

weighting kernel in the direction of small directional

derivatives, and they demonstrate that the whole procedure

requires at most 2 log(n) iterations.

• Under relatively mild assumptions, their estimator is
√
n-consistent.

• See Horowitz (2009, Section 2.6) for further discussions.
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Hristache, Juditsky and Spokoiny（補足）

• アイデア自体は単純：
• xが βと直交する方向に動いても xTβの変動はゼロである．
一方で，xが βと同じ方向に動けば,推定のために用いる情
報として有益である．そこで，そのような方向の xの変動の
みをとってきて，1次元の話を考えるとよいのでは？

• 「捨てる」ような xの変動に対しては，バンド幅を大きく
とってやる．すると，その分の収束スピードがはやくなって，
「次元の呪い」はクリアできるはず．
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Estimation of g(·)

• Let βn denote a
√
n-consistent estimator of β, or δ.

• Once we obtain βn, we can estimate g(xTβ0) by

ĝ(xTβn) =

∑n
j=1 YjK

(
(Xj−x)T βn

h

)
∑n

j=1K
(
(Xj−x)T βn

h

) .

• Recall that βn is a
√
n-consistent estimator of β, that is,

βn − β0 = Op(n− 1
2 ),

• This converges to zero faster than standard nonparametric

estimators.

• Then, the asymptotic distribution of ĝ(xTβn) is the same as

that of ĝ(xTβ0).

• Thus, we obtain Corollary 8.1:

√
nh[ĝ(xTβn)− g(xTβ0)− h2B(xβ0 )]

d−→ Normal

(
0,

κσ2(xTβ0)

f(xTβ0)

)
.
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Estimation of g(·)（補足）

• ĝ(xTβn)の漸近分布が，ĝ(xTβ0)の漸近分布と一致するとい
う話について：

• いま考えている ĝ(xTβn) というのは，generated regressorと
呼ばれるものである．

• 一般に，generated regressorを用いて推定する場合，漸近分
散を修正する必要がある．

• しかし，今のケースにおいては，ĝ(xTβn)の推定誤差がじゅ
うぶん大きいため，ラッキーなことに，そのような修正の必
要がない．
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Generalized Cases?

• The direct average derivative estimation method discussed

previously is applicable only when x is a q × 1 vector of

continuous variables because the derivative w.r.t. discrete

variables is not defined.

• Horowitz and Hardle (1996) discuss how direct (noniterative)

estimation can be generalized to cases for which some

components of x are discrete. Horowitz (2009) provides an

excellent overview of this method.
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Finite-Sample Problem

• Nonparametric estimation in the 1st stage may suffer from the

curse of dimensionality.

• In small-sample settings, the iterative method of Ichimura

(1993) may be more appealing as it avoids having to conduct

high-dimensional nonparametric estimation 3.

3あくまで，may beの話．
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Carroll, Fan, Gijbels and Wand (1997)

• They consider the problem of estimating a general partially

linear single index model which contains both a partially linear

model and a single index model as special cases.
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Bandwidth Selection



Bandwidth Selection for Ichimura’s Estimator

• Recall that we assume in Assumption 8.4 that
q ln(h)

nh3+
3

m−1

→ 0

and nh8 → 0 as n → ∞, where m ≥ 3 is a positive integer

whose specific value depends on the existence of the number

of finite moments of Y along with the smoothness of the

unknown function g(·). 4

• The range of permissive smoothing parameters allows for

optimal smoothing, i.e., h = O(n− 1
5 ). 5

4Assumption 8.4は，g をノンパラメトリックに推定することがパラメトリッ
クパートの収束レートに影響を与えないための十分条件になっている．
5このオーダーで選んだ hは，Assumption 8.4を満たしている．
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Bandwidth Selection for Ichimura’s Estimator

• Our aim is to choose β̂ close to β0, and h close to the value

h0, which minimize the average of

E{ĝ(XT
i β0 | XT

i β0)− g(XT
i β0)}2.

• Hardle, Hall and Ichimura (1993) suggest picking β and the

bandwidth h jointly by minimization of Sn(β).
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Bandwidth Selection for Ichimura’s Estimator

• Recall the proof of Theorem 8.1. We have established the

following decomposition of the least squares criterion:

Sn(β, h) =
1

n

n∑
i=1

(YiĜ−i(X
T
i β))

2

=
1

n

n∑
i=1

(Yi −G(XT
i β))

2

+
1

n

n∑
i=1

(G−i(X
T
i β0)− g(Xiβ0))

2 + op(1)

≡ S(β) + T (h) + op(1).

• Minimizing Sn(β, h) simultaneously over both
(β, h) ∈ Bn ×Hn is equivalent to

• first minimizing S(β) over β ∈ Bn; and

• second minimizing T (h) over h ∈ Hn.
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Bandwidth Selection for Ichimura’s Estimator

• Let (β̂, ĥ) be the minimizers of Sn(β, h).

• Suppose that we use the second order kernel. Hardle, Hall and

Ichimura (1993) show that the MSE optimal bandwidth

satisfies ĥ = O(n− 1
5 ), and

ĥ

h0

p−→ 1.
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Bandwidth Selection for Ichimura’s Estimator

• Compare the regularity conditions used in Ichimura (1993)

with those in Hardle, Hall and Ichimura (1993).

Ichimura (1993)

• A second order

kernel is used.

• h satisfies

assumption 8.4.

• E[|Y m|] < ∞ for
∃m ≥ 3.

HHI (1993)

• A higher order kernel

is needed a.

• h = O(n− 1
5 ).

• Y has moments of

any order.

a少なくとも 4次．

• 左の仮定は識別のための仮定．右の仮定は漸近分布を考える
ために導入したより強い仮定．
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Bandwidth Selection for Average Derivative Estimator

• The estimation of β0 involves the q-dimensional multivariate

nonparametric estimation of the first order derivatives.

• Smoothing Parameters for f̂
(1)
−i (Xi): Hardle and Tsybakov

(1993) suggest to choose the smoothing parameters

h1, · · · , hq to minimize MSE of δ̂.

• They show that the asymptotically optimal bandwidth is given

by hs = csn
− 2

2q+v+2 , for all s = 1, . . . , q, where cs is the

constant, and v is the order of kernel.

• Powell and Stoker (1996) provide a method for estimating cs.

• Horowitz (2009) suggests to select hs based on bootstrap

resampling.
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Bandwidth Selection for Average Derivative Estimator

• Smoothing Parameters for ĝ(Xi
Tβn): Once we select the

optimal hs’s, we can obtain an estimator of β. Let βn denote

a generic estimator.

• We estimate E[y|x] = g(xTβ0) by ĝ(xTβn, h) = ĝ(xTβn).

The smoothing parameter associated with the scalar index

xTβn can be selected by least squares cross-validation:

ĥ = argmin
h

n∑
i=1

[Yi − ĝ−i(X
T
i βn, h)]

2.

• Under some regularity conditions, the selection of h is of order

Op(n− 1
5 ).
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Klein and Spady’s (1993) Estimator



Semiparametric Binary Choice Model

• Consider the following binary choice model 6:

Yi =

{
1 if Y ⋆

i = α+XT
i β + ϵi > 0,

0 if Y ⋆
i = α+XT

i β + ϵi ≤ 0.

• This model can be rewritten as

E(Yi | Xi) = P(Yi = 1 | Xi)

= P(α+XT
i β + ϵi > 0)

= P(ϵi > −XT
i β − α) ≡ g(XT

i β),

which means that the binary choice model is a special case of

the single index models.
6(8.2)式を参照せよと書いてあるが，β の識別のためには定数項の係数 αを抜
いた方がよいのでは？
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Semiparametric Binary Choice Model

• Suppose that g(·) were known. We would estimate β by

maximum likelihood methods. The likelihood function would

be

L⋆(b) = P(ϵi > −XT
i b− α)

∑n
i=1 Yi

× P(ϵi ≤ −XT
i b− α)

∑n
i=1(1−Yi)

= g(XT
i b)

∑n
i=1 Yi × {1− g(XT

i b)}
∑n

i=1(1−Yi),

and then the log-likelihood function would be

L(b) =

n∑
i=1

[Yi log g(X
T
i b) + (1− Yi) log(1− g(XT

i b))].
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Klein and Spady’s (1993) Binary Choice Estimator

• In reality, g(·) is unknown.
• Klein and Spady (1993) suggest to replace g(·) with the

leave-one-out NW estimator

ĝ−i(X
T
i β) =

∑
j ̸=i K

(
(Xi−Xj)

T β

h

)
Yj∑

j ̸=i K

(
(Xi−Xj)

T β

h

) .

• Making this substitution, and adding a trimming function, this

leads to the feasible likelihood criterion:

L(β) =

n∑
i=1

[Yi log ĝ−i(X
T
i β) + (1− Yi) log(1− ĝ−i(X

T
i β))]1i(b),

where the trimming indicator should not be a function of β,

but instead of a preliminary estimator:

1i(b) = 1
(
f̂XT β̃(X

T
i β̃) ≥ b

)
,

with a preliminary estimator β̃ and density estimator f̂XT β̃(·). 57



Asymptotic Properties of Klein and Spady’s Estimator

• The following asymptotic properties hold:
• under some regularity conditions, and

• assuming that the kernel k is of higher-order (must be of

fourth-order).

• Define G(XT
i β) = E[g(XT

i β0) | XT
i β]. Then we obtain the

asymptotic distribution:
√
n(β̂ − β)

d−→ Normal(0,Ω),

where the asymptotic variance is given by

Ω = E
[
∂

∂β
G(XT

i β)
∂

∂β
G(XT

i β)
T 1

g(XT
i β0)(1− g(XT

i β0))

]−1

.

• Klein and Spady’s (1993) estimator achieves the

semiparametric efficiency bound for the single-index binary

choice model (not for the general single-index model).
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Lewbel’s (2000) Estimator



Lewbel’s (2000) Estimator

• Consider the following binary choice model:

Yi = 1(vi +XT
i β + ϵi > 0),

where vi is a (special) continuous regressor whose coefficient

is normalized to be one and Xi is of dimension q.

• Let f(v|x) denote the conditional PDF of vi given Xi.

• Let Fϵ(ϵ | v, x) denote the conditional CDF of ϵi conditioned

on (vi, Xi).
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Lewbel’s (2000) Estimator

• Assumption: Assume that Fϵ(ϵ | v, x) = Fϵ(ϵ | x).
• In words, here we assume that, conditional on x, ϵ is

independent of the special regressor v.

• We also introduce an orthogonality condition: E(Xiϵi) = 0.

• Identification:

β = E[XiX
T
i ]

−1E[XiỸi], where Ỹi =
Yi − 1(vi > 0)

f(vi | Xi)
.

• Estimation: Use the sample analogue of identification result,

replacing the unkown quantity f(vi | Xi) with its

nonparametric kernel estimator 7.

7ということは，random denominator problemが生じる？
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Lewbel’s (2000) Estimator: EXTENSION 1

• Assumption: There exists a p× 1 vector Zi of IVs, which

satisfies that E(Ziϵi) = 0, E(ZiX
T
i ) is non-singular, and

Fϵx(ϵ, x | v, z) = Fϵx(ϵ, x | z).
• We do not assume the orthogonality condition here.

• Identification 8:

β = E[ZiX
T
i ]

−1E[ZiỸi], where Ỹi =
Yi − 1(vi > 0)

f(vi | Xi)
.

• Estimation: Use the sample analogue of identification result,

replacing the unkown quantity f(vi | Xi) with its

nonparametric kernel estimator 9.

8この形で識別しているということは，丁度識別のケースのみを考えている？
9ここでもやはり，random denominator problemが生じる？
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Lewbel’s (2000) Estimator: EXTENSION 2

• Consider the ordered response model defined as

Yi =

J−1∑
j=0

j1(aj < vi +XT
i β + ϵi < aj+1),

where a0 = −∞ and aJ = +∞.

• Yj is called the response variable, which takes values in the

set {0, 1, · · · , J − 1}.
• Yi = j if

aj < vi +XT
i β + ϵi < aj+1.

• Let X1i = 1 be the intercept and β1 = 0 10.
10対応する係数がゼロでないと，インデックスモデルの識別条件に反する．
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Lewbel’s (2000) Estimator: EXTENSION 2

• Set Yji = 1(Yi ≥ j) for j = 1, · · · , J − 1.

• Define ∆ = E[XiX
T
i ]

−1 and ∆j as the jth row of ∆.

• Identification:

aj = −∆1E
[
Xi

Yji − 1(vi > 0)

f(vi|Xi)

]
, for j = 1, · · · , J − 1; and

bl = −∆jE

Xi

∑J−1
j=1 Yji

(J−1) − 1(vi > 0)

f(vi|Xi)

 , for l = 2, · · · , q.

• Estimation: Use the sample analogue of identification results,

replacing f(vi|Xi) with its nonparametric kernel estimator.

• Further Extension: These results can be extended to

mulitinomial choices models, partially linear latent variable

models, and threshold and censored regression models.
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Manski’s (1975, 1985) Maximum

Score Estimator



Manski’s (1975, 1985) Maximum Score Estimator

• Consider the binary choice model:

Yi =

{
1 if Y ⋆

i = XT
i β + ϵi > 0,

0 if Y ⋆
i = XT

i β + ϵi ≤ 0,

med(ϵi | Xi) = 0 ( ⇐⇒ med(Y ⋆
i | Xi) = XT

i β).

• Manski’s maximum score estimator is defined as

β̂M = argmax
β

n∑
i=1

Yi1(X
T
i β ≥ 0) + (1− Yi)1(X

T
i β < 0),

which is a LAD estimator of a linear median-regression model.
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Manski’s (1975, 1985) Maximum Score Estimator

• Under some assumptions, β̂M has strong consistency.

• The rate of convergence is n− 1
3 (Kim and Pollard, 1990).

• The limiting distribution is quite complex 11 and therefore not

ideal for statistical inferences.

• To approximate the asymptotic distribution, Manski and

Thompson (1986) use a bootstrap procedure.

11A distribution of a maximum of a multidimensional Brownian motion with

quadratic drift.
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Horowitz’s (1992) Smoothed

Maximum Score Estimator



Horowitz’s (1992) Smoothed Maximum Score Estimator

• Consider the binary choice model:

Yi =

{
1 if Y ⋆

i = XT
i β + ϵi > 0,

0 if Y ⋆
i = XT

i β + ϵi ≤ 0,

med(ϵi | Xi) = 0 ( ⇐⇒ med(Y ⋆
i | Xi) = XT

i β).

• Horowitz’s modified maximum score estimator is defined as

β̂H = argmax
β

1

n

n∑
i=1

(2Yi − 1)G

(
XT

i β

h

)
,

where G(·) is a p-times continuously differentiable CDF.

• Recall that Manski’s criterion function has the indicator

functions, which lead to the lack of continuity.

• Horowitz (1992) modifies Manski’s criterion, replacing the

indicator functions with a twice continuously differentiable

function that retains the essential features.
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Horowitz’s (1992) Smoothed Maximum Score Estimator

• Under some assumptions, as n → ∞;h = hn > 0; and h → 0,

G

(
XT

i β

h

)
→ 1(XT

i β ≥ 0).

• The convergence rate is
√
nh, and the asymptotic distribution

is normal.

• Taking h =
( c
n

) 1
2p+1

for some 0 < c < ∞, the convergence

rate becomes n− p
2p+1 .

• With sufficiently large p, the convergence rate becomes close

to n− 1
2 .
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Estimator



Han’s (1987) Maximum Rank (Correlation) Estimator

• Consider the binary choice model:

Yi =

{
1 if Y ⋆

i = XT
i β + ϵi > 0,

0 if Y ⋆
i = XT

i β + ϵi ≤ 0,

med(ϵi | Xi) = 0 ( ⇐⇒ med(Y ⋆
i | Xi) = XT

i β).

• Han’s maximum rank correlation estimator 12is defined as

β̂ = argmax
β

2

n(n− 1)

n∑
i=1

n∑
j>i

1(Yi ≥ Yj)1(X
T
i β ≥ XT

i β).

12この推定量も indicatorを用いて定義されているが，先ほどの maximum score

estimatorと違って，√
n一致性をもつし，漸近分布は Normalである．∑を 2

回とることで，ある種の smoothnessが成立しているのだろうか？
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Han’s (1987) Maximum Rank (Correlation) Estimator

• To motivate the maximum rank correlation estimator, observe

that

P(Yi > Yj | Xi, Xj) ≥ P(Yi ≤ Yj | Xi, Xj),

whenever XT
i β0 ≥ XT

j β0, which can be derived from the

monotonicity of CDF and the independence of ϵi’s and Xi’s.

• Interpretation: When XT
i β0 ≥ XT

j β0, more likely than not

Yi ≥ Yj .

• Let GH(β) denote the criterion function. Han (1987) shows

that E[GH(β)] is maximized at β = β0.

• Han (1987) also establishes the storng consistency.

• Sherman (1993) shows that the maximum rank correlation

estimator is
√
n-consistent and has an asymptotically normal

distribution 13.
13目的関数のかたちを見てわかるように，これらの漸近的な性質は U 統計量の
漸近理論から deriveされている． 69



Sherman (1993)
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More Generalized Cases?

• Matzkin (1992) does not impose any parametric structure on

either the systematic function of the observed exogenous

variable or on the distribution of the random error term.
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Multinomial Discrete Choice Models



Multinomial Discrete Choice Models

• Consider the case where an individual faces J > 2 choices.

• Define Yij = 1 if individual i selects alternative

j ∈ {1, · · · , J}; and Yij = 0 otherwise.

• Set Fij = P(Yij = 1 | Xi) = E(Yij | Xi).

• The multiple choice equation is given in

Yij = Fij + ϵij .

• The likelihood function is

n∑
i=1

J∑
j=1

Yij lnFij .

72



Semiparametric Multinomial Discrete Choice Models

• Semiparametric Approach: Set

Fij = E(Yij | XT
i1β1, · · ·XT

iJβJ)

= g(XT
i1β1, · · ·XT

iJβJ),

where the functional form of g(·) is unknown.
• Estimation: Ichimura and Lee (1991), Lee (1995).
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Ai’s (1997) Semiparametric

Maximum Likelihood Approach



Ai’s (1997) Semiparametric Maximum Likelihood Approach
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