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Introduction

e A semiparametric single index model is given by
Y = g(XTBo) +u,
where

Y € R : a dependent variable,

X € R%:a g x 1 explanatory vector,

By € RY:a g x 1 vector of unknown parameters,
u € R : an error term which satisfies E(u | X) = 0,

g(+) = an unknown distribution function.



Introduction

e Even though z is a ¢ x 1 vector, 27 3y is a scalar of a single

linear combination, which is called a single index.

e By the form of the single index model, we obtain
E(Y | X) = g(X"Bo),

which means that the conditional expectation of Y only
depends on the vector X through a single index X7 3.

e The model is semiparametric when 3 € RY is estimated with
the parametric methods and g(-) with the nonparametric

methods.



Examples of Parametric Single Index Model

e If g(-) is the identity function, then the model turns out to be

a linear regression model:
Y = g(XTBo) +u=X"Bo+u

o If g(-) is the CDF of Normal(0, 1), then the model turns out
to be a probit model.
e See the textbook for further discussions on a probit model.
e If g(-) is the CDF of logistic distribution, then the model turns

out to be a logistic regression model.
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Identification Conditions

~ Proposition 8.1 (Identification of a Single Index Model) —

For the semiparametric single index model Y = g(z” 30) +u,
identification of By and g(-) requires that

e (i) « should not contain a constant/an intercept, and
must contain at least one continuous variable. Moreover,
[1Boll=1.

e (ii) g(+) is differentiable and is not a constant function on
the support of 7 /3.

e (iii) For the discrete components of x, varying the values
of the discrete variables will not divide the support of
zT By into disjoint subsets.




Identification Condition (i)

e Note that the location and the scale of 5y are not identified.
e The vector x cannot include an intercept because the function
g(+) (which is to be estimated in nonparametric manners)
includes any location and level shift.
e That is, 5y cannot contain a location parameter.



Identification Condition (i)

e Some normalization criterion (scale restrictions) for 3 are
needed.

e One approach is to set |G| = 1.

e The second approach is to set one component of 3y to equal
one. This approach requires that the variable corresponding to
the component set to equal one to be continuously distributed
and has a non-zero coefficient.

e Then, x must be dimension 2 or larger. If x is
one-dimensional, then By € R! is simply normalized to 1, and
the model is the one-dimensional nonparametric regression
E(Y | ) = g(x) with no semiparametric component.



Identification Conditions (ii) and (

e The function g(-) cannot be a constant function and must be
differentiable on the support of z .

e x must contain at least one continuously distributed variable
and this continuous variable must have non-zero coefficient.
e If not, 273, only takes a discrete set of values and it would be
impossible to identify a continuous function g(-) on this
discrete support.
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Ichimura’s Method

e Textbook: Sections 8.2; 8.4.1; and 8.12.
e Suppose that the functional form of g(-) were known.

e Then we could estimate By by minimizing the least-squares
criterion:

S [Yi - g(xF B
i=1
with respect to .
e We could think about replacing g(-) with a nonparametric
estimator §(-).
e However, since g(z) is the conditional mean of Y; given

XFBo =z g(-) depends on unknown Sy. thus we cannot
estimate g(-) here.
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Ichimura’s Method

e Nevertheless, for a fixed value of 3, we can estimate
G(X]B) =E(Y; | X[ B) =E(g9(X] Bo) | XiB).

e In general G(X[B) # g(X]'B).
e When 3 = By, it holds that G(X] 8) = g(XI o). 1

Lk XFB #HWTEMEMIT2 Y, G g lZEFEE—HLEWD, ELW
AFv 7R XIB=X By DEERF—HTILEVH L.
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Ichimura’s Method

e First, we estimate G(X! 3) with the leave-one-out NW
estimator:
Gi(X[B) : =Ei(¥; | X{'B)

XTp-xTp
Zj;éinK< ’ h )

XTp—xTp
Foe (220
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Ichimura’s Method

e Second, using the leave-one-out NW estimator é_i(XiTB), we
estimate 3 with

p=agminy ¥~ GL(x78)] w(X)1(X: € 4,)

-~ arg min S,(8),

which is called Ichimura's estimator (the WSLS estimator).

e w(X;) is a nonnegative weight function.
o 1(X; € A,) is a trimming function to trim out small values of
T 1 XTp-xTg
p(X; B) = e i K (Jh> so that we do not
suffer from the random denominator problem.
o As={z:p(xTB) >, for '3 € B}.
o A, ={z: ||z —a*|| < 2h, for z* € A}, which shrinks to As

asn — oo and h — 0.
13



Asymptotic Distribution of Ichimura’s Estimator

o Let B denote the semiparametric estimator of 3y obtained
from minimizing S, (5).

e To derive the asymptotic distribution of B the following
conditions are needed:
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Asymptotic Distribution of Ichimura’s Estimator

~ Assumption 8.1 N

The set As is compact, and the weight function w(-) is bounded
and posotive on As. Define the set

D,={z:2=2"8,8€ B,z € As}.

Letting p(-) denote the PDF of z € D, p(-) is bounded below
by a positive constant for Yz € D,

J
-~ Assumption 8.2 ~
g(-) and p(-) are 3 times differentiable w.rt. z = z%. The
third derivatives are Lipschitz continuous uniformly over B for
V2 e D,.
J
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Asymptotic Distribution of Ichimura’s Estimator

-~ Assumption 8.3

The kernel function is a bounded second order kernel, which has
bounded support; is twice differentiable; and its second deriva-
tive is Lipschitz continuous.

\

N

~ Assumption 8.4

E(]Y™|) < oo for 7m > 3. var(Y | z) is bounded and bounded

qIn(h)

away from zero for Yz € Aj;. o 0 and nh® — 0 as
nh

n — oQ.

\

J
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Asymptotic Distribution of Ichimura’s Estimator

Theorem 8.1. Under assumptions 8.1 through 8.4,
V(B = Bo) % Normal(0, ),

with
Q=v-ixv-1
V = E{w(X;)(g")*
x (Xi — Ba(X; | XFBo))(Xi — Ea(Xs | X o)™},
% = E{w(X;)o? (Xi)(g\")?
x (Xi — BEa(Xs | X[ B0))(Xs — Ba(Xi | X[ Bo)"},
where

1 dg(v
o (0) =22 | _yrg.

e Ea(X; | v) =E(X; | #60 = v),
e 14 has the distribution of X; conditional on X; € Aj. 17



Asymptotic Distribution of Ichimura’s Estimator

e See Ichimura (1993); and Hardle, Hall and Ichimura (1993)
for the proof of Theorem 8.1.

e Horowitz (2009) provides an excellent heuristic outline for
proving Theorem 8.1, using only the familiar Taylor series
methods, the standard LLN, and the Lindeberg-Levy CLT.
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Optimal Weight under the Homoscedasticity Assumption

e We introduce the following homoscedasticity assumption:
E(u? | X;) = o
e Under this assumption, the optimal choice of w(-) is
e In this case,
~ n
p = arg mﬁin > (Y - G(XTBP)L(X; € 4y)
i=1

is semiparametrically efficient in the sense that (27 is the
semiparametric variance lower bound (conditional on

X € A(;).
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Optimal Weight under Heteroscedasticity

e In general, E(u? | X;) = 0?(X;).

e An infeasible case: If one assues that E(u? | X;) = 0?(X} 5o),
that is, the conditional variance depends only on the single
index X B3y, the choice of w(X;) = #fﬁo) can lead to a

semiparametrically efficient estimation.

e We could employ a two-step procedure as follows.

20



Two-Step Procedure to Choose Optimal Weight

e Suppose that the conditional variance is a function of Xl-Tﬁo
(Let 02(XT Bo) denote it).

e The first step: Use w(X;) =1 to obtain a y/n-consistent
estimator of 3.

e Let 3 denote the estimator of 3y, and @; = Y; — Q(XZTBO)
denote the residual obtained from fp.

e We can obtain a consistent nonparametric estimator of the
conditional variance: 6%(X] f).

21



Two-Step Procedure to Choose Optimal Weight

e The second step: Estimate [y again using w(X;) = m
i PO

Bg = argmﬁinz {YZ — é—z(XzTﬁ)r

i=1

ml(& S An)

T

e The estimator f3 is semiparametrically efficient because
62(v) — o%(v) converges to zero at a particular rate uniformly
over v € D, (D, is the support of X7 j3). 2

2520(XTB) BWAr— 23 H 5.
22



Direct Semiparametric Estimators
for



Direct Semiparametric Estimators for

e Textbook: Sections 8.3; and 8.4.2.
e Here we review:
e Hardle and Stoker's (1989) Average Derivative Estimator,
e Powell, Stock and Stoker's (1989) Density-Weighted Average
Derivative Estimator,
e Li, Lu and Ullah's (2003) Estimator, and
e Hristache, Juditsky and Spokoiny’s (2001) Improved Average
Derivative Estimator.

e The advantage of the direct estimation method is that we can
estimate 3y and g(z” By) directly without running the
nonlinear least squares, which leads to the computational
simplicity.

e We still suffer from a finite-sample problem.
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Hardle and Stoker’s (1989) Average Derivative Estimator

e Suppose that = is a ¢ X 1 vector of continuous variables.

e Then we obtain the average derivative of E(Y | X = x):

E[@E(YX:x)

= ] =E |9 (a"40)] o

e Recall that the scale of 5y is not identified, which means that
the constant E [g(l)(:zzTﬂo)] does not matter. That is, a
normalized estimation of E [%] is an estimation of

normalized .
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Hardle and Stoker’s (1989) Average Derivative Estimator

o Let E(Y; | X;) denote the NW estimator of E(Y; | X;):

Sy Yk (E2K)
K (xi;XJ) :

e Assuming that the kernel function is differentiable, we can

estimate [3y, estimating E [%} with its sample

EY; | X;) =

analogue:

1 <= OR(Y; | X;
3 (i | Xi)

Bave = ﬁ o 8XZ

ﬁave

ave|

e The scale normalization can also be implemented by

25



Hardle and Stoker’s (1989) Average Derivative Estimator

e An issue raised with this estimator is the random denominator
problem, which leads to a difficulty in the derivation of the
asymptotic properties.

e Rilstone (1991) establishes the /n-normality using a
trimming function.
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e As we obtain the average derivative above, we also obtain the
weighted average derivative of E(Y | X = z):

FE(Y | X = z)

E |w(x) 5

} =E [w(m)g(l)(JJTBO)] Bo-

27



Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e Let w(x) be the density function f(z), and ¢ denote the
density-weighted average derivative of E(Y | X = x).

e Then we obtain
B FE(Y | X = z)
o=k [f (X >ax]
= E[£(X)g" (X" 0)]
— [ 46T (@)do

= g(z" Bo) f*(z) — 2 / gz o) fV (2) f (z)d.

28



Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e Assume that f(x) = 0 at the boundary of the support of X.
Then we observe that g(z” 5y) f?(x) = 0, that is,

5= 2 [ g o)V @) f(e)d

= —2E[g(X 7 o) fV (X)]
= —2E[Y f(X)).

e We can estimate § by its sample analogue:
. 2 .
i= -0 LN,
1=

where f_;(X;) is the leave-one-out NW estimator of f(X):

= () 5 ()

JF

29



Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e There is no denominator messing with uniform convergence.

There is only a density estimator, no conditional mean needed.
e The textbook uses the NW estimator f()(X;) in (8.17).

e However, Powell, Stock and Stoker (1989) define their
estimator using the leave-one-out NW estimator f(fl)(Xl)

e Here we proceed with Powell, Stock and Stoker (1989).
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e A useful representation of 4 is given by
= VKW (22
s g ) e (555)

e Under some assumptions, if h — 0 and nh?t? — oo hold,
then the density-weighted average derivative estimator )

satisfies that
V(8 — E[3]) % Normal(0, Zs),

where
S = 4E[o?(X) O (X) FO(X)T] 4 4Var(£(X)gD (X)).
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U-Statistics Form of §

e Recall that K (-) is differentiable and symmetric, that is,
KW (u) = =KM(—u). Then, we obtain the standard
U-statistics form of §:

. n) T & 1\t o (Xi—X;
() £26)" = () e-n
. Letting Z; denote (V;, XI)T and p,(Z;, Z;) denote

—arr KO <7> (Y; = Y;), 6 can be rewritten as
R - “ln-1 n
i=1 j=i+1

e This representation of § permits a direct analysis of its
asymptotic properties, based on the asymptotic theory of
U-statistics. Further discussions can be seen in Serfling

(1980); van der Vaart (2000, Chapter 12). 2



Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e The asymptotic bias is a bit complicated.

e Let ¢ be the dimension of X, and set

qg+4 .. .
—— if g is even,
2
p:
% 5 ol

e The kernel function K (-) for the estimation of f(-) is required
to be of order at least p.

e The asymptotic bias is \/n(E(5) — §) = O(n%hp), which is
o(1) if nh? — 0.
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Powell, Stock and Stoker’s (1989) Density-Weighted Average

Derivative Estimator

e nh?’ — 0 is violated if h is selected to be optimal for the
estimation of f(-) or f((-). That is, this requirement needs
the bandwidth A to undersmooth to reduce the bias. Further
discussions on the bandwidth selection follow in Section 8.4.

e Cattaneo, Crump and Jansson (2010, 2011) introduce another
asymptotic theory to relax strong assumptions .

e Nishiyama and Robinson (2005): Density-weighted average
derivative estimators can be refined by bootstrapping
methods.
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Nishiyama and Robinson (2005)

Abstract

In a number of semiparametric models, smoothing seems necessary in order to
obtain estimates of the parametric component which are asymptotically normal and
converge at parametric rate. However, smoothing can inflate the error in the normal
approximation, so that refined approximations are of interest, especially in sample
sizes that are not enormous. We show that a bootstrap distribution achieves a valid
Edgeworth correction in case of density-weighted averaged derivative estimates of
semiparametric index models. Approaches to bias-reduction are discussed. We also
develop a higher order expansion, to show that the bootstrap achieves a further
reduction in size distortion in case of two-sided testing. The finite sample
performance of the methods is investigated by means of Monte Carlo simulations
from a Tobit model.

Keywords: Bootstrap; Edgeworth correction; semiparametric averaged derivatives
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Li, Lu and Ullah’s (2003) Estimator

e We consider the estimation of the average derivative
E[g™ (XTBo)] again.

e We can also use the local polynomial method for the
estimation of (M) (X7 3y).

e Let g (X' By) denote the kernel estimator of ¢(!)(X;8,),
which is obtained from an m-th order local polynomial
regression.

~ 1
e Li, Lu and Ullah (2003) suggest to use Bupe = — (X7 Bo)
n
to estimate 5 = E[g() (X7 5y)).
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Li, Lu and Ullah’s (2003) Estimator

e Their approach does not require the condition f(z) = 0 at the
boundary of the support of X. However, they require to
assume that

e the support of X is a compact set, and that
e the density f(x) is bounded below by a positive constant at
the support of X,

which avoids the use of a trimming function.
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Li, Lu and Ullah’s (2003) Estimator

e Under the assumptions so far and some additional conditions,
q

if we use a second order kernel, where nZagm — 0 and
s=1
nay - ag g
In(n)
polynomial estimation, then,

\/ﬁ(&we —B) 4, Normal (0, D+ var(g(l)(XTﬁo))> ,

a(X) fM(X) FO(x)T
f@(X) '
e The proof of the asymptotic normality can be derived from

— 0o with m denoting the order of local

where & = E

U-statistics theory.
e Newey (1994) shows that the asymptotic variance does not
depend on the specific nonparametric estimation method.
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Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator

e Powell, Stock and Stoker’s (1989) density-weighted average
derivative estimator requires the density of X to be
increasingly smooth as the dimension of X increases.

e This is necessary to make /(6 — &) asymptotically normal
with a mean of 0.

e Practical Consequence: The finite-sample performance of the
density-weighted average derivative estimator is likely to be
deteriorated as the dimension of X increases, especially if the

density of X is not very smooth.

e Specifically, the estimator’s bias and MSE are likely to
increase as the the dimension of X increases.
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Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator

e Hristache, Juditsky and Spokoiny (2001) introduce an iterated
average derivative estimator that overcomes this problem.

e Their estimator is based on the observation that g(z”3g) does
not vary when x varies in a direction that is orthogonal to .

e Therefore, only the directional derivative of E(Y | X = x)
along the direction of /3 is needed for estimation.

e Suppose that this direction were known. Then estimating the
directional derivative would be a one-dimensional
nonparametric estimation problem, and there would be no

curse of dimensionality.
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Hristache, Juditsky and Spokoiny’s (2001) Improved Average

Derivative Estimator

e In practice, the direction of 3 is unknown.

e Hristache, Juditsky and Spokoiny (2001) show that this can
be estimated with sufficient accuracy through an iterative
procedure.

e Their idea is to use prior information about the vector (5 for
improving the quality of the gradient estimate by extending a
weighting kernel in the direction of small directional
derivatives, and they demonstrate that the whole procedure
requires at most 2log(n) iterations.

e Under relatively mild assumptions, their estimator is
\/n-consistent.

e See Horowitz (2009, Section 2.6) for further discussions.
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Hristache, Juditsky and Spokoiny (##/E)

o 7477 BRIZHH :

o r [ LERTBHHENIENNTD 278 DEFIX e TH 3.
—7TC, BB e CHMNCENTIX, #ED=DIZHW 5 1F
W LTERTHS. 22T, TDEIRHAD 2 DEHD
AEEOTET, IRXCDMEEEZ DL LVDTIX?

o MET2) X5k DEFIHL T, N> FiIEEKEL
Lo TRb. TbL, ZOTDIRAY — RAERL Ko T,
RITTDOHBN ] 17 ) 7 TEBIET
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Estimation of ¢(-)

e Let (3, denote a /n-consistent estimator of 3, or .
e Once we obtain j3,, we can estimate g(z7 ;) by

Z i j <(X _I) ﬁn)
j=
j —Z Bn ’
S
e Recall that 3, is a y/n-consistent estimator of 3, that is,

Bn — Bo = Op(n~2),

e This converges to zero faster than standard nonparametric

9(x"Bn) =

estimators.

e Then, the asymptotic distribution of §(z73,) is the same as
that of §(z” o).

e Thus, we obtain Corollary 8.1:

nh[g(z” —g(zT — K2 1‘6 d rm M
Vihla(a" n) — g( Bo) — WB(x§)] % Normal (0, T 23.



Estimation of ¢(-) (&)

o (2T B,) DEHRLIFD, §(xT Bo) DEHESMH L —T 3 LW
S EHICDOWT -

e WEEZX TV g(278,) ¥\ DIE, generated regressor &
N 2dDTH 5.

o —fi%IZ, generated regressor * W THEE T 257, Wk
MZBIET 20EDH 5.

o L2L, 5DFr —RZBWVWTIE, §(2T8,) DHMEREN L »
IRAREND, ZvF—I LT, ZDLS5REEDNL
B,
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Generalized Cases?

e The direct average derivative estimation method discussed
previously is applicable only when x is a ¢ x 1 vector of
continuous variables because the derivative w.r.t. discrete
variables is not defined.

e Horowitz and Hardle (1996) discuss how direct (noniterative)
estimation can be generalized to cases for which some
components of x are discrete. Horowitz (2009) provides an
excellent overview of this method.
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Finite-Sample Problem

e Nonparametric estimation in the 1st stage may suffer from the
curse of dimensionality.

e In small-sample settings, the iterative method of Ichimura

(1993) may be more appealing as it avoids having to conduct

high-dimensional nonparametric estimation 3.

3% < T, may be D,
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Carroll, Fan, Gijbels and Wand (1997)

e They consider the problem of estimating a general partially
linear single index model which contains both a partially linear
model and a single index model as special cases.
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Bandwidth Selection for Ichimura’s Estimator

In(h
o Recall that we assume in Assumption 8.4 that %(3) — 0
nh m—1

and nh® — 0 as n — oo, where m > 3 is a positive integer
whose specific value depends on the existence of the number

of finite moments of Y along with the smoothness of the
unknown function g(-).
e The range of permissive smoothing parameters allows for

optimal smoothing, i.e., h = O(n"3). °

*Assumption 8.4 1%, g%/ VNG XA MY v ZITHEET B LM ARAFTX MY v
I R—=FOPNHRL — MZHEE B Z R WD DT &R oTW0 3.
SZDF—X—TEAT hiZ, Assumption 8.4 Ziifi/=L T\ 3.
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Bandwidth Selection for Ichimura’s Estimator

e Our aim is to choose B close to By, and h close to the value
ho, which minimize the average of

E{g(X] Bo | X' Bo) — 9(X] Bo)}>.

e Hardle, Hall and Ichimura (1993) suggest picking 3 and the
bandwidth & jointly by minimization of S, ().
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Bandwidth Selection for Ichimura’s Estimator

e Recall the proof of Theorem 8.1. We have established the
following decomposition of the least squares criterion:
e
W(B,h) = = ) (YiG-i(X] B))?
Sn(B,h) = — > (ViG-i(X{'B))

=1

= L% G(XFB)Y
i=1

+ = S (G(XT o) — 9(Xio))? + op(1)
=1

= S(B) + T(h) + op(1).

e Minimizing S, (5, h) simultaneously over both
(B,h) € B, x H, is equivalent to
e first minimizing S(3) over 8 € B,,; and

e second minimizing T'(h) over h € H,,.
50



Bandwidth Selection for Ichimura’s Estimator

e Let (3, k) be the minimizers of S, (5, h).
e Suppose that we use the second order kernel. Hardle, Hall and
Ichimura (1993) show that the MSE optimal bandwidth
P

- h
satisfies h = O(nfé), and P 1.
0
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Bandwidth Selection for Ichimura’s Estimator

e Compare the regularity conditions used in Ichimura (1993)
with those in Hardle, Hall and Ichimura (1993).

e A second order e A higher order kernel
kernel is used. is needed “.

e 1 satisfies e h=0(n"3).
assumption 8.4. e Y has moments of

e E[[Y™|] < oo for any order.
“m > 3. hmib AR,

o KEOEIXFANDT=DDIRE. HDOIEZEHL I EEZ S
7=DIEA L K DIRWRE.
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Bandwidth Selection for Average Derivative Estimator

e The estimation of Jj involves the g-dimensional multivariate
nonparametric estimation of the first order derivatives.

e Smoothing Parameters for f(fl)(X,) Hardle and Tsybakov
(1993) suggest to choose the smoothing parameters
hi,- -, hg to minimize MSE of 5.

e They show that the asymptotically optimal bandwidth is given
by hs = csn_m, forall s =1,...,q, where ¢4 is the
constant, and v is the order of kernel.

e Powell and Stoker (1996) provide a method for estimating cs.

e Horowitz (2009) suggests to select hs based on bootstrap
resampling.
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Bandwidth Selection for Average Derivative Estimator

e Smoothing Parameters for §(X;’ 3,): Once we select the
optimal hy's, we can obtain an estimator of 5. Let /3, denote
a generic estimator.

o We estimate Ely|z] = g(z”5o) by §(z7 Bn, h) = §(z7 5,).
The smoothing parameter associated with the scalar index
2T, can be selected by least squares cross-validation:

—argmlnz (X B, h)]2

e Under some regularity conditions, the selection of A is of order
Op(n_%).
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Klein and Spady’s (1993) Estimator




Semiparametric Binary Choice Model

e Consider the following binary choice model ©:

- J 1t =a+XB+e >0,
Tl 0ifYr=a+ X B+e <0.

e This model can be rewritten as

EYi| X;)=PY;=1]| X;)
(a+ XI'B+¢>0)

(6 > =X B — o) = g(X]'P),

P
P

which means that the binary choice model is a special case of
the single index models.
6(8.2) RESIE L L ENTH 57, B DA D= DITITEBUAD BRI o 2K
W B E WD TIE?
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Semiparametric Binary Choice Model

e Suppose that g(-) were known. We would estimate 3 by

maximum likelihood methods. The likelihood function would
be

L*(b) = P(e; > —XTb— a)2iz Vi
X P(Gz < —X,LTb — a)z?zl(lfyi)
= g(XTb)Zi=1Yi x {1 — (X[ )} i (1-Y0),

and then the log-likelihood function would be

n

L(b) =) [Vilog g(X]b) + (1 — ;) log(1 — g(X]"b))].
i=1
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Klein and Spady’s (1993) Binary Choice Estimator

e In reality, g(-) is unknown.
e Klein and Spady (1993) suggest to replace g(-) with the

leave-one-out NW estimator .
(x;-x,)18
g*Z(Xz 5) = xX.—x)\T
o Ki=X)T8
237&7’ h

e Making this substitution, and adding a trimming function, this

leads to the feasible likelihood criterion:
n

L(B) = ) _[¥ilog j—i(X]B) + (1 - Yi) log(1 — g—i(X] B))]1:(b),
i=1
where the trimming indicator should not be a function of 3,

but instead of a preliminary estimator:
1i(8) =1 (fxrs(XTH) 2 b),

with a preliminary estimator 3 and density estimator fXT,é('>- 57



Asymptotic Properties of Klein and Spady’s Estimator

e The following asymptotic properties hold:
e under some regularity conditions, and
e assuming that the kernel & is of higher-order (must be of
fourth-order).

e Define G(X[8) = E[g(X] Bo) | XI 8]. Then we obtain the
asymptotic distribution:
V(B — B) % Normal(0, Q),
where the asymptotic variance is given by
0 9 1 -
Q=E|=GX!B)=GXIpT
95 "X P g D ST = o (XT A
e Klein and Spady’s (1993) estimator achieves the

semiparametric efficiency bound for the single-index binary
choice model (not for the general single-index model).
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Lewbel’s (2000) Estimator

e Consider the following binary choice model:
Yo = 1(7)Z'+XiTﬁ+€i >0)7

where v; is a (special) continuous regressor whose coefficient

is normalized to be one and X; is of dimension g¢.
e Let f(v|z) denote the conditional PDF of v; given Xj.

o Let F,(e| v,x) denote the conditional CDF of ¢; conditioned
on (’UZ', Xz)
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Lewbel’s (2000) Estimator

e Assumption: Assume that F (e | v,z) = F¢(e | z).
e In words, here we assume that, conditional on z, € is
independent of the special regressor v.

e We also introduce an orthogonality condition: E(Xj;e;) = 0.

e Identification:

Y; — 1(v; > 0)
flui | X3)

e Estimation: Use the sample analogue of identification result,

= E[X,; X[ 'E[X,Y;], where Y; =
(2

replacing the unkown quantity f(v; | X;) with its
nonparametric kernel estimator .

"¥\W5 Z 2%, random denominator problem 34U 3 ?
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Lewbel’s (2000) Estimator:

e Assumption: There exists a p x 1 vector Z; of Vs, which
satisfies that E(Z;¢;) = 0, E(Z;X]) is non-singular, and
Fo(e,z | v,2) = Fep(e, | 2).

e We do not assume the orthogonality condition here.

e Identification &:

Y, — 1(’1)1' > 0)
f(vi | Xi)

e Estimation: Use the sample analogue of identification result,

B =E[Z; X 'E[Z;Y;], where Y; =

replacing the unkown quantity f(v; | X;) with its
nonparametric kernel estimator °.

SZDIETHANLTVWE WS Zid, TEHRINDr —2DAEEEZTNS ?
°Z ZTH*IE D, random denominator problem 2341 % ?
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Lewbel’s (2000) Estimator:

e Consider the ordered response model defined as

J-1
Y = Zjl(aj < v; +XZTB+61' < aj+1),
=0
where ¢g = —0o0 and aj = +o0.

e Y is called the response variable, which takes values in the
set {0,1,---,J —1}.
o V=7 if
a; <U1+X2Tﬂ+€i < Gj41-

e Let Xi; = 1 be the intercept and 5; = 0 10,
OIS 2R R TRVE, [ VT v 7 RAETFALOBANZFRT 5.
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Lewbel’s (2000) Estimator:

o SetY;; =1(Y;>j)forj=1,---,J—1.
e Define A = E[X;X]]! and A; as the jth row of A.

e |dentification:

[ Y'i—l(vi>0) .
a; = —AE Xij] ,forj=1,---,J—1; and
! i f il X3)
F= sz,
o aw X—g;jl?%—uwm o
= — i 7 , 1or bt = 2,---,(q.
! f(vi] Xi)

e Estimation: Use the sample analogue of identification results,
replacing f(v;|X;) with its nonparametric kernel estimator.

e Further Extension: These results can be extended to
mulitinomial choices models, partially linear latent variable
models, and threshold and censored regression models.
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Manski’s (1975, 1985) Maximum
Score Estimator




Manski’s (1975, 1985) Maximum Score Estimator

e Consider the binary choice model:

1Y =XTB+e >0,
Tl 0ifYr=XTB8+6 <0,

med(e; | X;) =0 (<= med(Y | X;) = X13).

e Manski's maximum score estimator is defined as

By = argmngEl(X?B >0)+ (1-Y3)1(X] 8 < 0),
i=1

which is a LAD estimator of a linear median-regression model.
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Manski’s (1975, 1985) Maximum Score Estimator

Under some assumptions, [3js has strong consistency.

The rate of convergence is n=3 (Kim and Pollard, 1990).

The limiting distribution is quite complex ! and therefore not

ideal for statistical inferences.

e To approximate the asymptotic distribution, Manski and
Thompson (1986) use a bootstrap procedure.

1A distribution of a maximum of a multidimensional Brownian motion with

quadratic drift.
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Horowitz's (1992) Smoothed
Maximum Score Estimator




Horowitz’s (1992) Smoothed Maximum Score Estimator

e Consider the binary choice model:

1Y =XTB+e >0,
Tl 0ifYr=XTB8+6 <0,

med(e; | X;) =0 (<= med(Y} | X;) = X13).

e Horowitz's modified maximum score estimator is defined as
s 1 ¢ xrp
= — 2y, - 1)G | —— |,
Bu argmﬁaxng( i — 1) < W )
where G(-) is a p-times continuously differentiable CDF.
e Recall that Manski's criterion function has the indicator
functions, which lead to the lack of continuity.
e Horowitz (1992) modifies Manski's criterion, replacing the
indicator functions with a twice continuously differentiable

function that retains the essential features. 6



Horowitz’s (1992) Smoothed Maximum Score Estimator

e Under some assumptions, as n — oco; h = h,, > 0; and h — 0,

G <X25> — (X5 >0).

e The convergence rate is vVnh, and the asymptotic distribution

is normal.

1
Cc

e Taking h = (—)m for some 0 < ¢ < 0o, the convergence
n

__pP
rate becomes n 2p+1,

e With sufficiently large p, the convergence rate becomes close
1

ton 2.
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Han’s (1987) Maximum Rank
Estimator




Han’s (1987) Maximum Rank (Correlation) Estimator

e Consider the binary choice model:

0if Y =XI8+¢€ <0,
med(e; | X;) =0 (<= med(Y/ | X;) = X13).

{ 1if Y= XT84 ¢ >0,
P =

e Han's maximum rank correlation estimator 12is defined as

B—argmax ZZ Y >Y)) XT6>XTB)

=1 j>1

L2 ofEER D indicator ZHWVWTER SN TWVWAD, JElF Y D maximum score
estimator ¥i# o T, /n —BEZbOL, WLoMIE Normal THS. Y %2
[l 28T, HAFD smoothness SHIL L TWBDIEA S0 ?
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Han’s (1987) Maximum Rank (Correlation) Estimator

e To motivate the maximum rank correlation estimator, observe
that

whenever X,;T“S() > X;fpﬁ(), which can be derived from the
monotonicity of CDF and the independence of ¢;'s and X;'s.

e Interpretation: When XT/BO XTBO more likely than not
Y > Y.

e Let Gy (B) denote the criterion function. Han (1987) shows
that E[G ()] is maximized at 8 = [y.

e Han (1987) also establishes the storng consistency.

e Sherman (1993) shows that the maximum rank correlation

estimator is y/n-consistent and has an asymptotically normal
; 13
13@5@&5@@#7175 ERTbH»2 E512, ThoOWENREER U Histiko

B & derive STV 3 69



Sherman (1993)

THE LIMITING DISTRIBUTION
OF THE MAXIMUM RANK CORRELATION ESTIMATOR

By Robert P. Sherman!

Abstract

Han’s maximum rank correlation (MRC) estimator is shown to be
\/n-consistent and asymptotically normal. The proof rests on a general
method for determining the asymptotic distribution of a maximization
estimator, a simple U-statistic decomposition, and a uniform bound for
degenerate U-processes. A consistent estimator of the asymptotic covari-
ance matrix is provided, along with a result giving the explicit form of
this matrix for any model within the scope of the MRC estimator. The
latter result is applied to the binary choice model, and it is found that the
MRC estimator does not achieve the semiparametric efficiency bound.

KEYwORDS: Generalized regression model, maximum rank correlation
estimator, discontinuous criterion function, general method, U-statistic
decomposition, uniform bound, empirical process, degenerate U-process,
VC class, Euclidean class, numerical derivatives, semiparametric efficiency

bound. 70



More Generalized Cases?

e Matzkin (1992) does not impose any parametric structure on
either the systematic function of the observed exogenous
variable or on the distribution of the random error term.
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Multinomial Discrete Choice Models




Multinomial Discrete Choice Models

Consider the case where an individual faces J > 2 choices.

Define Y;; = 1 if individual 7 selects alternative
je{l,---,J}; and Y;; = 0 otherwise.

The multiple choice equation is given in
Yij = Fij + €5.

The likelihood function is

n J
ZZK] lIlFij.

i=1 j=1
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Semiparametric Multinomial Discrete Choice Models

e Semiparametric Approach: Set

Fij =E(Yi; | X5B1,--- X5 87)
= g(XE5 B, X5By),

where the functional form of g(-) is unknown.

e Estimation: Ichimura and Lee (1991), Lee (1995).
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Ai’s (1997) Semiparametric
Maximum Likelihood Approach




Ai’s (1997) Semiparametric Maximum Likelihood Approach

Econometrica, Vol. 65, No. 4 (July, 1997), 933-963

A SEMIPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATOR

By CHUNRONG Al

This paper presents a procedure for analyzing a model in which the parameter vector
has two parts: a finite-dimensional component ¢ and a nonparametric component A. The
procedure does not require parametric modeling of A but assumes that the true density of
the data satisfies an index restriction. The idea is to construct a parametric model passing
through the true model and to estimate @ by setting the score for the parametric model to
zero. The score is estimated nonparametrically and the estimator is shown to be VN
consistent and asymptotically normal. The estimator is then shown to attain the semipara-
metric efficiency bound characterized in Begun et al. (1983) for multivariate nonlinear
regression, simultaneous equations, partially specified regression, index regression, cen-
sored regression, switching regression, and disequilibrium models in which the error
densities are unknown.

KEYWoORDs: Kernel, semiparametric, nonparametric, asymptotic efficiency.
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